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Figure 1.1. Mechanisms of thrombosis and inflammation in intraportal islet 
transplantation. Tissue factor expressed on islets interacts with factor 
VIIa (fVIIa), activating factor X (fX) which converts prothrombin to 
thrombin, a key mediator of thrombotic and inflammatory events. Local 
thrombin generation triggers platelet activation and adhesion, further 
amplying coagulation cascades, and ultimately entrapping islets within 
fibrin clots.  Furthermore, thrombin acts as a chemoattractant and can 
trigger expression of endothelial cell adhesion molecules, promoting 
migration of neutrophils, monocytes, and Kupfer cells to the portal bed. 
Additionally, islets release a number of inflammatory mediators 
including MCP-1, IL-1β, TNF-α, IL-6, and nitric oxide, which may trigger 
or exacerbate thrombotic and inflammatory responses post-
transplantation through activation of endothelial cells and attraction and 
activation of leukocytes. 9 

Figure 2.1. (A) Islets were incubated with PLL, PPB[5], and PPB[2.5] at 1 
mg/ml, and viability was assessed after various incubation times (mean 
± SD, *p<0.05 compared to untreated controls). PLL exerted significant 
toxicity after only 15 minutes, while incubation with PPB[5] decreased 
islet viability slightly, but significantly, after 4 hours. PPB[2.5] did not 
reduce islet viability even after a 12 hour incubation (p>0.05). (B) 
Representative confocal micrographs of islets stained with calcein AM 
(green, viable) and ethidum homodimer (red, non-viable) overlaid on 
bright field micrographs demonstrate changes in islet morphology 
associated with polycation-mediated cell death (from left to right: PLL, 
PPB[5], PPB[2.5]). 40 

Figure 2.2. PAH/PSS/PAH film assembly is toxic to human pancreatic islets. 
Representative confocal micrographs of (A) untreated and (B) 
PAH/PSS/PAH coated human islets stained with calcein AM (green, 
viable) and ethidum homodimer-1 (red, non-viable) overlaid on bright 
field micrographs (scale bar = 50 µm). (C) In a subpopulation of islets, 
coating with a PAH/PSS/PAH film resulted in considerable peripheral 
cell death, but a viable islet core (scale bar = 50 µm).   (D) Fluorescent 
emission associated with ethidium homodimer-1 staining demonstrates 
a punctate distribution consistent with binding to nucleic acids within 
islet cell nuclei (scale bar = 20 µm). (E) Image analysis of confocal 
micrographs (Live/Dead) as well as viability assessment by MTS assay 
revealed a significant difference (*p<0.01) in viability between 
untreated (black bar) and PAH/PSS/PAH coated (grey bar) islets. (F) 
Lactose dehydrogenase (LDH) release from islets during deposition of 
the initial PAH layer (1st layer), as well as after formation of a 
PAH/PSS/PAH film (grey bars) was significantly greater (*p<0.01) than 
untreated controls (black bars), indicating that islet cell membranes are 
compromised as a result of PAH/PSS/PAH coating. 41 
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Figure 2.3. PPB facilitates specific binding of streptavidin to the surface of 
pancreatic islets. (A) Islets incubated with PPB for 15 minutes and 
subsequently with Cy3-labeled streptavidin (Cy3-SA) demonstrated 
fluorescent emission around the islet periphery. Islets incubated in only 
Cy3-SA demonstrated no fluorescent signal (B), and treatment of islets 
with non-modified PLL prior to Cy3-SA resulted in discontinuous, 
concentrated domains of fluorescent emission (C) (scale bar = 50 µm). 43 

Scheme 2.1. Assembly of PEG-rich, nanothin conformal islet coatings via 
layer-by-layer deposition of poly(L-lysine)-g-poly(ethylene glycol) (PPB) 
and streptavidin (SA). PPB interacts electrostatically with negatively 
charged cell surfaces, facilitating the binding of SA. Unoccupied biotin 
binding sites of immobilized SA allow a second layer of PPB to be 
added, thereby enabling incorporation of a second SA layer. This 
process may be repeated to generate thin films assembled via 
alternating deposition of PPB and SA.  PPB facilitates specific binding 
of streptavidin to the surface of pancreatic islets. 45 

Figure 2.4. PPB/SA multilayer thin films can be assembled on planar 
substrates. Solid-state UV-vis spectroscopy was used to monitor film 
growth on quartz slides. Absorbance spectra recorded after each 
PPB/Cy3-SA bilayer deposition demonstrates a regular layer-by-layer 
growth pattern. Inset: absorbance at 554 nm (Cy3; mean ± SD) 
increases linearly with layer number through at least eight bilayers 46 

Figure 2.5. PPB/SA multilayer films can be assembled on individual pancreatic 
islets. After formation of a PPB/Cy3-SA bilayer, islets were either 
incubated with a second layer of PPB (A) or placed into cell culture 
media (B). Both groups were then incubated with FITC-labeled 
streptavidin (FITC-SA) for 5 minutes. Only islets incubated with a 
second layer of PPB (A) demonstrated fluorescence emission from 
FITC-SA due to regeneration of accessible biotin groups on the islet 
surface.  49 

Figure 2.6. Three dimensional reconstruction of optical confocal microscope 
sections (0.5 µm) of the lower half of an islet coated with a (PPB/Cy3-
SA)4 multilayer film. Each image is rotated ~24° from the previous (left 
to right, top to bottom). The film is grossly uniform and conforms to 
protrusions and indentations of the islet surface. 49 

Figure 2.7. PPB/SA multilayer films assemble extracellularly. Islet cell nuclei 
were stained with Hoechst (blue) to identify individual cells within islets. 
Islets were coated with a (FITC-PPB/Cy3-SA)4 multilayer film, and 
confocal microscopy was used to identify film components. PPB and 
SA were colocalized on the surface of cells on the islet periphery (A) as 
well as in the interstitial space between individual cells within the core 
of the islet (B). Conversely, FITC-PLL was observed throughout the 
cytoplasm of cells and often colocalized with cell nuclei (C).  50 
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Figure 2.8. Islet viability and function are preserved after formation of a 
(PPB[2.5]/SA)8 multilayer film. (A) Viability (mean ± SD) was assessed 
after film formation via calcein AM and ethidium homodimer staining. 
Image analysis of confocal micrographs revealed no statistical 
difference (p>0.05) in islet viability between untreated (black bar) and 
coated islets (grey bar) for both mouse and human islets. (B) Untreated 
(black bar) and coated islets (grey bar) secrete statistically similar 
(p>0.05) amounts of insulin at both 3.3 and 16.7 mM glucose, 
indicating that islet function is not influenced by film formation. Data 
points represent mean ± SE, for a minimum of seven independent 
measurements.  52 

Figure 2.9. (PPB/SA)8/PPB coated islets perform comparably to untreated 
islets after intraportal islet transplantation. Two hundred and fifty (250) 
untreated (solid line) or (PPB/SA)8/PPB coated (dashed line) B10 
mouse islets from were transplanted into the portal vein of diabetic B6 
mice. Blood glucose levels were monitored daily for two weeks and 
conversion to euglycemia was defined as glucose levels < 200 mg/dl 
for > 2 consecutive days. Islets coated with a (PPB/SA)8/PPB film 
resulted in an increased conversion to euglycemia (46.7%; 7/15) 
relative to untreated controls (37.5%; 6/16), however, this difference 
was not statistically significant  (χ2 = 0.11).  54 

Figure 3.1. Grafting of mPEG4 to poly(L-lysine) reduces cytotoxicity in a 
grafting ratio-dependent manner. (A) Representative confocal and 
bright field micrographs of islets stained with calcein AM (green, viable) 
and ethidum homodimer (red, non-viable) after incubation with PLL and 
PLL12kD-g[x]-PEG4 copolymers of different grafting ratio.  Note that 
polycation-mediated peripheral cell death is associated with changes in 
islet morphology (scale bar = 50 µm). (B) Quantification of islet viability 
(relative to untreated control groups) by image analysis (mean ± SD) 
after incubation (40 m, 80 µM) with PLL and PLL12kD-g[x]-PEG4 
copolymers of different grafting ratio. Unless otherwise indicated, 
groups are significantly different (p<0.01) from all other groups. Bars 
with the same letter label are not statistically different from each other 
(p>0.05). Bars labeled with the letter b are not statistically different from 
untreated controls (>0.05).  71 

 
Figure 3.2. PLL molecular weight influences the toxicity of PLLM-g[x]-PEG4 

copolymers. (A) At a grafting ratio of 2.5, increasing the molecular 
weight of the PLL backbone from 12 kD to 45 kD or 100 kD significantly 
reduces islet viability (mean ± SD, p<0.01). (B) Cytoxicity of PLL45kD-
g[x]-PEG4 copolymers is reduced with decreasing grafting ratio, with a 
grafting ratio of 1.7 necessary to yield viability statistically 
indistinguishable from untreated controls. Unless otherwise indicated, 
groups on the same plot are significantly different (p<0.1) from all other 
groups. Bars with the same letter label are not statistically different 
from each other (p>0.05). Bars labeled with the letter b are not 
statistically different from untreated control groups (p>0.05). 73 
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Figure 3.3. Increasing PEG chain length reduces PLL12kD-g[x]-PEGn 
copolymer toxicity. (A) Viability of islets (mean ± SD) incubated with 
copolymers in which 40% of lysine monomers were acetylated 
(P12Ac[2.5]) or conjugated to mPEG4 (P12P4[2.5]). A significant 
decrease (p<0.01) in islet viability occurs upon incubation with 
P12Ac[2.5] relative to P12P4[2.5] and untreated controls, indicating a 
dependence on grafted PEG chains in PLL12kD-g[x]-PEGn cytotoxicity.  
Conjugation of PEG12 (B) and PEG24 (C) chains to PLL attenuates 
cytotoxicity in a grafting ratio-dependent manner, with grafting ratios of 
3.3 and 2.5, respectively, yielding islet viabilities statistically 
indistinguishable from untreated controls (p>0.05). (D) For a given 
grafting ratio (x=4 and x=5), increasing PEG chain length decreases 
PLL12kD-g[x]-PEGn toxicity. Unless otherwise indicated groups on the 
same plot are significantly different (p<0.01) from all other groups. Bars 
labeled with the letter b are not statistically different from untreated 
control groups (>0.05). 76 

 
Figure 3.4. Poly(L-lysine) and P12Ac[2.5] localize intercellularly. Confocal 

micrographs of islets incubated with FITC-labeled PLL (A,B) and 
AF488-labeled P12Ac[2.5] (C,D) demonstrate fluorescence throughout 
the cytoplasm of individual cells within islets often colocalized with cell 
nuclei (blue) identified via Hoechst staining (scale bar: A,C = 50 µm; 
B,D = 10 µm).  78   

 
Figure 3.5. PLLM-g[x]-PEGn copolymers at the critical grafting ratio, xc, remain 

extracellular and adsorb to extracellular islet surfaces. (A-C) Confocal 
micrographs of islets during incubation with AF488-labeled PLLM-g[xc]-
PEGn copolymers.  After 40 minutes, polymer was observed almost 
exclusively extracellularly, indicating maintenance of cell membrane 
integrity and minimal polymer endocytosis. Polymers were able to 
diffuse into the core of islets through interstitial space and/or capillary 
networks (C). Upon rinsing, polymers were found to adsorb to the 
extracellular surface of cells and/or matrix (D-F). Copolymer adsorption 
was observed both on the islet periphery (D,E) as well as between 
individual cells within the core of the islet (E,F). Cell nuclei were 
identified via Hoechst staining (scale bar: A,C,D = 50 µm; B,E,F = 10 
µm).  79 

   
Scheme 3.1. Assembly of cell surface-supported polyelectrolyte multilayer thin 

films via layer-by-layer deposition of poly(L-lysine)-g[x]-poly(ethylene 
glycol)n at the critical grafting ratio, xc, and alginate.  82 

Figure 3.6. Polyelectrolyte multilayer (PEM) films can be assembled on 
individual pancreatic islets through layer-by-layer deposition of PLLM-
g[xc]-PEGn copolymers and alginate. Using P12P24[4] and fluorescein 
labeled alginate as polycation and polyanion, respectively, confocal 
micrographs of coated islets reveal dramatic differences in fluorescent 
intensity associated with films comprised of eight bilayers (A) and a 
single bilayer (B). Qualitatively comparable images were obtained 
using P12P12[3.3], P12P4[2.5], and P45P4[1.7] as polycations. 
Controls treated only with alginate eight times in an analogous layer-
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by-layer manner (C) demonstrate little or no fluorescence, indicating 
that alginate deposition is polycation-dependent. After assembly of 
eight bilayers, alginate incorporated into PEM films is localized 
predominantly on the extracellular surface of islets (D). By contrast, 
fabrication of a single PLL/alginate bilayer results in intercellular 
internalization of alginate by peripheral cells (E,F). Cell nuclei were 
identified via Hoechst staining (scale bar: A,B,C,E = 50 µm; D,E = 10 
µm). 83 

 
Figure 3.7. Polyelectrolyte multilayer (PEM) films assembled using PLLM-

g[xc]-PEGn copolymers and alginate demonstrate unique growth 
profiles on planar substrates. Solid-state UV-vis spectroscopy was 
used to monitor film growth on quartz substrates. (A) Example of 
absorbance spectra recorded after the second PLLM-g[xc]-PEGn (e.g., 
P12P24[4]) incubation and every other incubation thereafter through 
twelve depositions. (B) Absorbance values at 495 nm, corrected to 
account for differences in degree of labeling, as a function of layer 
number (mean ± SD). Use of P12P4[2.5] (●), P12P12[3.3] (○), and 
P12P24[4] (▼) as polycations resulted in layer-by-layer film growth 
with a non-linear, exponential-like growth pattern. By contrast, film 
growth using P45P4[1.7] (∆) stagnated after six bilayers. After 
incubation of all films in 5 M NaCl for 20 minutes absorbance at 495 
nm was essentially absent, indicating complete film decomposition 
and, hence, assembly through electrostatic interactions. 87 

 
Figure 3.8. Film thickness increases with layer number and may be tailored 

through PLL12kD-g[xc]-PEGn properties. Ellipsometric film thickness 
measurements (mean ± SD) after assembly of 4, 6, and 8 bilayers 
using P12P24[4] (●), P12P12[3.3] (○), and P12P4[2.5] (▼) as 
polycations and alginate as the polyanion. Measured thicknesses and 
statistical analysis are provided in Table 3.4.  88 

 
Figure 4.1.  Cytocompatible PLL12kD-g[x]-PEGn(R) copolymers bearing biotin, 

hydrazide, and azido functional groups may be generated through 
proper control of grafting ratio and PEG chain length. (A) Islet viability 
after 40 m incubation with functionalized copolymers synthesized with 
PEG4 and a grafting ratio, x, between 2.0 and 2.5. Copolymers 
containing hydrazide and biotin PEG head groups, R, had no 
discernable effect on islet viability relative to untreated controls  or 
copolymers bearing methyl R groups (p>0.05). An azido-functionalized 
variant, however, induced a significant reduction (p<0.01) in islet 
viability (A,C). Increasing the length of PEG spacer from 4 to 12 repeat 
units significantly (p<0.05) increased islet viability to levels statistically 
similar to controls as well as other functionalized polymers (B, D). Bars 
labeled with the letter a are statistically different (p<0.01) from all other 
bars as well as untreated controls. Scale bars in C,D are 50 µm. 114 

 
Scheme 4.1.  Cell surface engineering using functionalized PLL-g-PEG 

copolymers. Adsorption of PLL-g-PEG copolymers functionalized with 
biotin, azide, and hydrazide moieties facilitates selective capture of 
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streptavidin-, triphenylphosphine-, and aldehyde(CHO)-labeled probes, 
respectively, on the islet surface. 119 

 
Figure 4.2. PLL12kD-g[x]-PEGn(R) copolymers can be used to generate 

functional groups on the islet surface. Islets were incubated with 
hydrazide (NHNH2), azide (N3), or biotin functionalized copolymers, and 
appropriate biotinylated or fluorescently-labeled probes were used to 
detect functional groups via confocal microscopy. Hydrazide groups 
were detected using fluorescein-labeled alginate oxidized to contain 
aldehyde groups on approximately 10% of monomer repeat units (F-
Alginate-CHO10). Cell surface azides were detected using a 
triphenylphosphine-PEG3.4kD-biotin conjugate (Phos-PEG-biotin). Biotin 
groups were detected with Cy3-labeled streptavidin (Cy3-SA). 
Copolymers synthesized using methyl-PEG4 (R=CH3) with a grafting 
ratio of 2.5 (P12P4(CH3)) were used as controls. Representative 
confocal micrographs are shown; scale bar = 50 µm.  120 

 
Figure 4.3. PLL12kD-g[2.0-2.5]-PEG4(biotin) copolymers provide an alternative 

to NHS-ester functionalized biotinylation reagents. At equimolar biotin 
concentration NHS-PEG4(biotin) (black bar) and P12P4(biotin) (white 
bar) immobilized comparable (p>0.05) amounts of streptavidin (A). 
However, Islets treated with NHS-PEG4(biotin) presented an irregular 
morphology (B), whereas islets incubated with P12P4(biotin) (C) 
maintained the smooth border characteristic of isolated and cultured 
murine islets. Scale bar = 50 µm. 121 

 
Figure 4.4. Biotin and hydrazide groups may be simultaneously displayed 

through co-adsorption of functionalized PLL-g-PEG copolymers. Islets 
were incubated in a mixture of P12P4(biotin) and P12P4(hydrazide), 
and subsequently incubated with F-Alginate-CHO10 (top panel), Cy3-
SA (middle panel), or a mixture of the two (bottom panel). Two-channel 
confocal microscopy was used to detect Cy3 (left panel) and 
flourescein (right panel). Representative confocal micrographs 
demonstrate simultaneous display of both biotin and hydrazide 
moieties on the islets surface. Scale bar = 50 µm.  123 

 
Figure 4.5. Polyelectrolyte multilayer (PEM) films can be assembled on 

individual pancreatic islets through layer-by-layer deposition of PLL12kD-
g[2.5]-PEG4(CH3) and oxidized alginate. Using fluorescein-labeled 
alginate oxidized to contain aldehyde groups on approximately 10% of 
monomer repeat units (F-Alginate-CHO10) as the polyanion, confocal 
micrographs of coated islets reveal dramatic differences in fluorescent 
intensity associated with films comprised of eight bilayers (A) and a 
single bilayer (B). Controls treated only with F-Alginate-CHO10 (C) 
demonstrate little or no fluorescence, indicating that alginate-CHO10 
deposition is polycation-dependent. 126 

 
Figure 4.6. Cell surface-supported PEM films assembled using oxidized 

alginate facilitate presention of reactive aldehydes. (A) Islets coated 
with an eight bilayer P12P4[2.5]/F-Alg-CHO10 film (left panel) were 
reacted with hydrazide-LC-biotin (NHNH2-biotin) and biotin groups 
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detected using Cy3-SA and confocal microscopy (right panel). (B) 
Incubation of coated islets (left panel) with only Cy3-SA (right panel) 
demonstrated no or only sporadic fluorescent emission, indicating that 
streptavidin is not incorporated via Schiff base formation with aldehyde 
groups. (C) Islets incubated only with F-Alg-CHO10 (left panel) and 
subsequently with biotin-NHNH2 and Cy3-SA (right panel) 
demonstrated no or sporadic fluorescent emission indicating that biotin 
is introduced in an aldehyde-specific manner.  127 

 
Figure 5.1. Co-expression of tissue factor and thrombomodulin by isolated and 

cultured pancreatic islets. (A) Western blot of murine islet lysate using 
rabbit anti-mouse tissue factor IgG demonstrates a distinct band at 
approximately 47 kD, corresponding to the expected molecular weight 
of tissue factor. Murine lung homogenate served as a positive control. 
(B) Thrombin-dependent production of activated protein C (APC) by 
human islets indicates endogenous thrombomodulin activity.  140 

Scheme 5.1. Site-specific biotinylation of recombinant human thrombomodulin 
(rTM) through Staudinger ligation between rTM engineered with a C-
terminal azido group (1) and triarylphosphine-PEG3.4kD-biotin (2) linker.  143 

 
Figure 5.2. Site-specific biotinylation of recombinant human thrombomodulin. 

(A) Upon reaction between rTM-N3 and triarylphosphine-PEG3.4kD-biotin 
SDS PAGE reveals the presence of two species separated by 
approximately 4 kD (Lane 1), corresponding to the desired biotinylated 
conjugate (∗) and unreacted rTM-N3. A molecular weight shift was not 
observed in a parallel control reaction using rTM engineered without an 
azido group (Lane 2), demonstrating the specificity of the Staudinger 
ligation. Lane 3 corresponds to a 20 kD marker. (B) Western blot 
against human TM after initial conjugation (Lane 2) and subsequent 
purification (Lane 3). After purification via centrifugal dialysis and 
monomeric avidin chromatography, a single species corresponding to 
the expected molecular weight of the desired biotin-PEG-TM conjugate 
is observed  (∗). Lane 1: molecular weight ladder, 20 kD marker 
indicated. (C) Western blot against biotin using HRP-labeled 
streptavidin confirms biotinylation of the construct (∗; Lane 2); Lane 1: 
molecular weight ladder, 20 kD marker indicated. 144 

Scheme 5.2.  Islet surface biotinylation through chemical targeting of amines 
and aldehydes. (A) Conjugation of biotin (●) via hydrazone bond 
formation between biotin-hydrazide and aldehydes generated through 
mild sodium metaperiodate (NaIO4) oxidation of sialic acid residues. (B) 
Islet biotinylation using NHS-ester functionalized biotinylation reagents. 
(C) Strategies may be utilized in combination to increase density of 
biotin groups on the cell surface.  148 

 
Figure 5.3. Islet surface density of streptavidin may be maximized through 

optimization of biotinylation reactions targeting cell surface amines and 
aldehydes.  (A) Comparison of N-hydroxysuccinimide ester (NHS) 
functionalized biotinylation reagents and reaction conditions 
demonstrated maximum streptavidin incorporation using 
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sulfosuccinimidyl-6-[biotinamido]hexanoate (sNHS-LC-B) at a 
concentration of 4 mM. (B) Comparison of reaction conditions used for 
coupling [biotinamido]hexanoate hydrazide (NHNH2-LC-B) to cell 
surface aldehydes demonstrated a dependence on NHNH2-LC-B 
concentration, but not on reaction time at 4 mM. (C) Optimized 
conditions for sNHS-LC-B and NHNH2-LC-B (2+6) can be combined to 
increase streptavidin surface density by nearly 50% over either strategy 
alone. Bars labeled with the letter a are not statistically different from 
each other (p>0.05). 149 

 
Figure 5.4. Sequential biotinylation of cell surface aldehydes and amines does 

not adversely influence islet viability. Islet viability upon combination 
biotinylation and subsequent immobilization of streptavidin (grey bars) 
was statistically similar (p>0.01) to untreated controls (black bars) 
immediately (t=0) and 24 hours (t= 24 h) after treatment (A). 
Representative bright field and confocal micrographs of islets stained 
with calcium AM (green, viable) and ethidium homodimer (red, non-
viable) of islets immediately after treatment (B) and without treatment 
(C). Scale bar = 50 µm. 150 

 
Figure 5.5. Immobilization of rTM on the islet surface via streptavidin-biotin 

interactions increases rates of activated protein C (APC) generation.  
Upon combination biotinylation and subsequent incubation with 
streptavidin (Biotin + SA) islets were incubated with rTM-biotin at 3.5 
µM for 1 hour, resulting in an approximately three-fold increase in the 
rate of APC generation relative to untreated controls.  Immobilization of 
streptavidin alone was found to have no effect on rates of APC 
generation (∗p<0.05).  152 

 
Scheme A.1. Construction of a polymerized, self-assembled, membrane-

mimetic thin film on an alginate/poly(L-lysine) polyelectrolyte multilayer 
cushion.  Alternating layers of poly(L-lysine) and alginate are first 
assembled on an alginate/Ca2+ hydrogel microsphere, followed by 
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SUMMARY 

 

 Islet transplantation has emerged as a promising cell-based therapy for the 

treatment of diabetes, but its clinical efficacy remains limited by deleterious host 

responses that underlie islet destruction.  In this dissertation, we describe the assembly 

of ultrathin conformal coatings that confer molecular-level control over the composition 

and biophysicochemical properties of the islet surface with implications for improving 

islet engraftment. Significantly, this work provides novel biomolecular strategies for cell 

surface engineering with broad biomedical and biotechnological applications in cell-

based therapeutics and beyond. 

  Encapsulation of cells and tissue offers a rational approach for attenuating 

deleterious host responses towards transplanted cells, but a need exists to develop cell 

encapsulation strategies that minimize transplant volume. Towards this end, we 

endeavored to generate nanothin films of diverse architecture with tunable properties on 

the extracellular surface of individual pancreatic islets through a process of layer-by-

layer (LbL) self assembly.  We first describe the formation of poly(ethylene glycol) 

(PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-

PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and 

chemically heterogeneous islet surface, and could be assembled without loss of islet 

viability or function. Significantly, coated islets performed comparably to untreated 

controls in a murine model of allogenic intraportal islet transplantation, and, to our 

knowledge, this is the first study to report in vivo survival and function of 

nanoencapsulated cells or cell aggregates. 

 Based on these findings, we next postulated that structurally similar PLL-g-PEG 

copolymers comprised of shorter PEG grafts might be used to initiate and propagate the 
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assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while 

simultaneously preserving islet viability.  Through control of PLL backbone molecular 

weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered 

cytocompatible and used to initiate and propagate the growth of cell surface-supported 

PEM films. Planar characterization of this novel class of PEM films indicated that film 

thickness and composition may be tailored through appropriate control of layer number 

and copolymer properties. Furthermore, these investigations have helped establish a 

conceptual framework for the rational design of cell surface-supported thin films, with the 

objective of translating the diverse biomedical and biotechnological applications of PEM 

films to cellular interfaces.   

  Important to the development of effective conformal islet coatings is an inherent 

strategy through which to incorporate bioactive molecules for directing desired 

biochemical or cellular responses.  Towards this end, PLL-g-PEG copolymers 

functionalized with biotin, azide, and hydrazide moieties were synthesized and used, 

either alone or in combination, to capture streptavidin-, triphenylphosphine-, and 

aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films 

assembled using alginate chemically modified to contain aldehyde groups could be used 

to introduce hydrazide-functionalized molecules to the islet surface.  Hence, modified 

film constituents may be used as modular elements for controlling the chemical 

composition cell and tissue surfaces. 

 Finally, we report a strategy for tethering thrombomodulin (TM) to the islet 

surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell 

surface biotinylation, TM could be integrated with the islet surface. Re-engineering of 

islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the 

powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile 

strategy for increasing the local concentration of APC at the site of transplantation.  
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CHAPTER 1 

Introduction 

 

1.1. CENTRAL HYPOTHESIS AND OBJECTIVES 

 Clinical islet transplantation remains limited, in part, by early islet destruction and 

primary non-function, processes largely facilitated by pernicious inflammatory responses 

triggered by islet-derived procoagulant and proinflammatory mediators.  Under normal 

physiological conditions, endothelial cells lining the extensive microvasculature of 

pancreatic islets provide a natural barrier to thrombosis and inflammation [1]. During islet 

isolation and culture, however, this barrier is disrupted [1, 2], exposing procoagulant and 

inflammatory mediators while simultaneously stripping away endothelial cell-derived 

regulators of inflammation. In this regard, we have postulated that the native 

endothelium offers a paradigm for re-engineering the islet surface. The central 

hypothesis of this work is that conformal coatings assembled on the surface of 

individual islets may be designed to provide barriers to thrombosis and inflammation. 

Specifically, we have postulated that layer-by-layer (LbL) polymer self assembly can be 

used to generate ultrathin physical barriers, and that incorporation of thrombomodulin 

will provide a biochemical barrier through its capacity generate activated protein C, a 

potent inhibitor of thrombosis and inflammation.  The objectives of the work described 

in this dissertation were to i) design cytocompatible conformal islet coatings of diverse 

architecture and properties through a process of LbL polymer self assembly, ii) devise 

general strategies for immobilizing or otherwise integrating anti-coagulant and anti-

inflammtory molecules into LbL thin films, and iii) develop a strategy to tether 

thromobomodulin to the surface of islets. Resultant to fulfillment of these objectives is 

the development of novel biomolecular strategies for cell surface engineering.  
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1.2. BACKGROUND† 

 The design characteristics of conformal coatings for intraportal islet 

transplantation are dictated by an intent to limit the deleterious effects of thrombosis and 

inflammation, and must therefore be governed by an understanding of the 

pathophysiologic mechanisms underlying these processes as well as a recognition of the 

challenges inherent to islet encapsulation and conformal coating. Accordingly, 

background information relevant to the design of anti-inflammatory conformal barriers is 

presented in three key areas. First, the pathophysiology of thrombotic and inflammatory 

responses that facilitate early islet destruction during intraportal islet transplantation is 

discussed. Next, limitations of existing approaches to islet encapsulation and conformal 

coating are reviewed. Finally, emerging approaches to improve islet engraftment through 

attenuation of thrombotic and inflammatory responses are highlighted.  

 1.2.1. Pathophysiology of Thrombosis and Inflammation in Intraportal Islet 

Transplantation 

 Insulin dependent diabetes mellitus (IDDM) afflicts nearly 4 million people in 

North America and Europe [3], including over 120,000 people under the age of 19 in the 

United States, making IDDM one of the most frequent chronic childhood diseases in the 

US [4]. Islet transplantation has long been conceived as a promising treatment for type 1 

diabetes [5-9].  Despite advantages over whole pancreas transplantation [10-16], 

between 1990 and 1998 more than half of islet allografts failed within two months and 

                                                 

 
 
† Reproduced in part from Wilson JT and Chaikof EL. Thrombosis and Inflammation in 
Intraportal Islet Transplantation: A Review of Pathophysiology and Emerging 
Therapeutics. Journal of Diabetes Science and Technology 2008;2:746-759., and Wilson 
JT and Chaikof EL. Challenges and Emerging Technologies in the Immunoisolation of 
Cells and Tissues. Advanced Drug Delivery Reviews 2008;60:125-145.  
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only 8% of patients remained insulin independent beyond one year [17]. In 2000 Shapiro 

and colleagues introduced the Edmonton Protocol, which combined transplantation of 

freshly isolated islets with a steroid-free immunosuppressive regimen [18]. During this 

procedure islets are infused percutaneously into the hepatic portal vein (intraportally) 

where they travel to and ultimately lodge within the liver sinusoids. In their seminal 

report, 7 of 7 patients remained insulin independent one year post-transplantation [18]. 

This success has reinvigorated widespread interest in islet allotransplantation, and since 

2000 more than 500 patients worldwide have received islet transplantation using the 

Edmonton Protocol and slight modifications thereof [17]. Importantly, at the three leading 

islet transplant centers, 90% of patients receiving islet transplants remain insulin 

independent by one year [19] and Shapiro and colleagues have reported 60% insulin 

independence at three years [17], rates comparable, albeit lower, to those observed in 

whole pancreas transplantation [16]. 

 Islet transplantation is compromised by early islet destruction. Despite such 

marked improvements, islet transplantation remains limited, in part, by the need to 

transplant islets from 2-4 donor organs, often in separate infusions, to reverse diabetes 

in a single patient [12, 18, 20-23], further burdening a limited donor islet source [24], 

increasing health care costs [16], and the incidence of procedural complications. Though 

single-donor islet transplantation has been reported [25], in a recent international trial of 

the Edmonton Protocol, 44% of patients required three islet infusions, less than half of 

which remained insulin independent at one year [26]. It has been estimated that a 

normal human pancreas contains approximately 500,000 islet equivalents (IEQ) [23], 

only 10-20% of which appear to be necessary to maintain euglycemia [27]. Currently, 

patients receive ~10,000-12,000 IEQ/kg (~700-850 thousand IEQ for a 70 kg person), 

nearly twice the number in a normal pancreas and substantially more than should be 
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required to maintain insulin independence [18, 23, 27].  This discrepancy suggests that 

transplanted islets are functionally impaired and/or fail to engraft. Indeed, metabolic 

challenges after transplantation indicate that the functional capacity of transplanted islets 

is only 20-40% of that of a non-diabetic person even in insulin independent islet 

recipients [28], and it has been estimated that as few as 10-20% of infused islets survive 

clinical islet transplantation [23]. This is supported by animal models, whereby 50-70% of 

transplanted islets are lost in the immediate post-transplant period [29-31]. Importantly, 

rates of insulin independence drop to ~10% five years post-transplant [32], and it has 

been suggested that early islet destruction results in engraftment of a limited islet mass 

that becomes exhausted with long term metabolic demands [16, 31, 32].   

 Early islet destruction and primary non-function are mediated by innate 

inflammatory responses. Despite being transplanted across identical auto- and allo- 

immune barriers, the extent of graft destruction is significantly greater in islet 

transplantation than in whole pancreas transplantation. This is perhaps most clearly 

illustrated in experimental models of syngeneic islet transplantation into non-

autoimmune diabetic mice [31, 33, 34]. Even under such ideal transplantation conditions, 

islet insulin content and function are significantly compromised [34, 35], and an 

estimated 60% of transplanted islet tissue is lost within 3 days post transplantation [31] 

by both necrotic and apoptotic mechanisms [31, 33], demonstrating that early islet 

destruction is not allo- or autoantigen-specific. By contrast, in the absence of 

immunosupression, allografted islets that survive such initial inflammatory insults are 

destroyed by specific immune responses ~7-22 days later (i.e., allorejection) [36-40]. 

While a number of factors likely contribute to early islet destruction in the immediate 

post-transplant period, including delayed and insufficient revascularization of the graft 

[41], ischemia-reperfusion injury [42], glucose and lipotoxicity [43, 44], compelling 



www.manaraa.com

 5

evidence has emerged that early islet destruction is largely mediated by innate 

inflammatory responses. Animal models of islet transplantation have demonstrated 

significant inflammation at the graft site characterized by activation of portal vein 

endothelial cells (ECs) [45], intense infiltration of leukocytes into and around islets [37, 

45-47], and elevated levels of proinflammatory mediators [45, 47-50] that adversely 

effect β-cell viability and function [49, 51, 52]. Unlike conventional implantable materials, 

which are largely passive bystanders of inflammatory responses and subsequent device 

failure [53], islets directly contribute to their own destruction via expression and secretion 

of bioactive mediators that initiate and propagate inflammatory and procoagulant 

pathways. This is perhaps best illustrated by Bottino et al. who demonstrated that 

intraportal infusion of islets, but not equivalently sized glass microspheres, triggered 

increased cytokine production in the immediate post transplant period [48].  

 Islets initiate activation of coagulation cascades. Recent evidence indicates 

that deleterious inflammatory responses may be generated, in large part, by an 

instantaneous blood-mediated inflammatory reaction triggered by islets in direct contact 

with blood [3, 54-56] (Figure 1.1). Korsgren and colleagues have demonstrated that 

tissue factor (TF), the primary physiological initiator of the coagulation system [57], is 

expressed by and released from β and α cells of isolated islets [55]. TF initiates the 

extrinsic arm of the coagulation pathway by interacting with factor VIIa, catalyzing the 

conversion of factor X to its active form, fXa, resulting in conversion of prothrombin to 

thrombin. Indeed, islets incubated in non-anticoagulated blood in vitro induced a 

significant thrombotic response, as evidenced by fibrin clots surrounding islets and 

increased levels of thrombin-antithrombin complex (TAT), prothrombin fragments 1 and 

2, and fXIa-antithrombin complex [54, 55]. Platelets were also activated, as evidenced 

by reduced platelet counts and release of β-thromboglobulin from alpha granules [55], 



www.manaraa.com

 6

further amplifying thrombin generation and promoting aggregation of platelets on the 

islet surface, presumably through interactions between platelet adhesion molecules and 

islet-derived extracellular matrix proteins [58].  Interestingly, in a porcine allograft model, 

Lamblin et al. observed elevated TAT upon islet transplantation, but found no such effect 

when a similar volume of polystyrene beads was infused, demonstrating the cell-specific 

nature of the thrombotic response [59]. Perhaps more compelling, in nine patients 

undergoing clinical islet transplantation, serum levels of prothrombotic markers (TAT, 

fVIIa-antithrombin, and D-dimer) were significantly elevated 15 minutes to 24 hours post-

transplantation [56], and patient serum levels of cross-linked fibrin degradation product 

have been shown to correlate with pre-transplant levels of TF expression by islets [60].  

 Islet-initiated coagulation contributes to inflammatory responses. Though 

perhaps better known for its role in coagulation, thrombin also acts as a conductor of 

cellular responses during inflammation [61]. Thrombin can trigger expression of 

endothelial cell (EC) adhesion molecules [61-63], and stimulate EC production of the 

proinflammatory cytokines IL-6 and IL-8 as well as platelet activating factor, a potent 

neutrophil activator [62]. Furthermore, thrombin acts as a chemoattractant [64] and 

directly triggers platelet activation, resulting in the release of alpha-granule chemokines 

and expression of P-selectin, thereby attracting neutrophils and monocytes to the portal 

bed and promoting their arrest and activation [62, 65, 66].   

 In accord with the known effector functions of thrombin, EC activation (ICAM-1, 

E-selectin, P-selectin expression), neutrophil infiltration, and increased production of 

cytokines and inflammatory mediators (IL-1β, TNF-α, IL-6, IFN-γ, NO) are observed 6-12 

hours after islet transplantation in syngeneic animal models, resulting in significant islet 

apoptosis within 24 hours [45, 46, 67]. Though monocytes, Kupffer cells, portal vein 

ECs, and hepatocytes likely participate in generation of this cytoxic inflammatory milieu 
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[52], evidence is emerging that neutrophilic granulocytes act as the principle effector cell 

in early islet destruction [46, 68]. Yasunami et al. have recently demonstrated that IFN-γ 

produced by neutrophils plays a crucial role in early islet destruction and that injection of 

antibodies against neutrophil surface markers Gr-1 and CD11b dramatically attenuates 

this effect [46]. Interestingly, despite use of a simplified in vitro model of islet-blood 

contact, Moberg et al. have demonstrated that neutrophils begin to infiltrate islets within 

15 minutes, and are the predominant the cellular infiltrate [68]. Significantly, addition of 

Melagatran, a low molecular weight thrombin inhibitor, has been shown to reduce 

neutrophil infiltration while preserving islet morphology [69]. Hence, islet-initiated 

thrombin generation appears to contribute significantly to the initiation and/or elaboration 

of inflammatory responses implicated in islet destruction and primary non-function.  

 Islet-derived inflammatory mediators contribute to thrombotic and 

inflammatory responses. While blood-mediated responses play a critical role in islet 

destruction, evidence of inflammation and islet death in syngeneic animal models of islet 

transplantation into the kidney capsule suggest that direct islet-blood contact is not a 

prerequisite for initiation of inflammatory responses [31, 33, 47, 49, 69]. As a result of 

metabolic and mechanical stress associated with isolation and culture, isolated islets 

have been shown to express and/or release an array of inflammatory mediators [1, 36, 

52, 70-81] which may trigger or exacerbate thrombotic and inflammatory response post-

transplantation (Figure 1.1). Indeed, an inverse correlation between pre-transplant 

expression levels of inflammatory mediators and islet engraftment has been observed in 

both animal models [74, 78] as well as in clinical islet transplantation [60, 79]. 

Significantly, Piemonti et al. have demonstrated increased rates of insulin independence 

and significant reduction in insulin requirements in patients who received islet grafts 

expressing low levels of monocyte chemoattract protein-1 (MCP-1) [79]; similar results 
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have been reported in syngeneic murine models [78]. Soluble factors released from 

islets have been shown to activate portal vein ECs  [45, 82] and Kupffer cells [52, 83], 

further contributing to elaboration of inflammatory responses. Indeed, in an animal model 

of islet transplantation, transient inhibition of Kupffer cells has been found to reduce 

levels of proinflammatory mediators (TNF-α, IL-β, NO) 3-6 hours post transplantation, 

resulting in improved islet engraftment [48]. While the contribution of islet-derived 

inflammatory mediators in early islet destruction has yet to be fully elucidated, 

particularly in intraportal islet transplantation where coagulation-mediated inflammatory 

events are presumed to dominate, their role in potentiating the inflammatory response 

must be considered.   
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Figure 1.1. Mechanisms of thrombosis and inflammation in intraportal islet 
transplantation. Tissue factor expressed on islets interacts with factor VIIa (fVIIa), 
activating factor X (fX) which converts prothrombin to thrombin, a key mediator of 
thrombotic and inflammatory events. Local thrombin generation triggers platelet 
activation and adhesion, further amplying coagulation cascades, and ultimately 
entrapping islets within fibrin clots.  Furthermore, thrombin acts as a chemoattractant 
and can trigger expression of endothelial cell adhesion molecules, promoting migration 
of neutrophils, monocytes, and Kupfer cells to the portal bed. Additionally, islets release 
a number of inflammatory mediators including MCP-1, IL-1β, TNF-α, IL-6, and nitric 
oxide, which may trigger or exacerbate thrombotic and inflammatory responses post-
transplantation through activation of endothelial cells and attraction and activation of 
leukocytes.  
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 1.2.2. Current Challenges in Islet Encapsulation and Conformal Coating 

Since the pioneering work by Chick et al. in the development of a bioartificial 

pancreas [84] and Lim and Sun’s introduction of alginate-encapsulated islets [85], 

decades of extensive research has focused on the design and application of 

immunoisolation devices capable of protecting transplanted allo- and xenogenic cells 

from the host, while facilitating adequate transport of oxygen, nutrients, and secreted 

therapeutic molecules. While a variety of polymeric and inorganic matrices and 

membranes have been utilized to produce immunoisolation devices of diverse 

physiochemical properties and geometries [86], which include vascular perfusion 

devices, avascular diffusion chambers, and macrocapsules [87, 88], to date, most 

strategies have employed microcapsules consisting of cells or cell clusters entrapped 

within a spherical semi-permeable membrane, an inherently more favorable geometry 

for diffusive nutrient transport that can be implanted with minor surgery [87, 88]. While 

the principle objective of the work presented in this dissertation is not to generate 

immunoprotective barriers per se, the lessons afforded by earlier efforts directed towards 

islet microencapsulation will prove to be highly valuable in the design of conformal 

coatings for intraportal islet transplantation.  

Mass transport limitations in microencapsulation. Although the high surface-

to-volume ratio provided by microencapsulation considerably improves mass transport 

relative to macrocapsules or extravascular diffusion chambers [14, 87], the relatively 

large size of conventional microcapsules, typically 400-800 µm in diameter, continues to 

impose transport limitations that, if not accounted for, may adversely effect cell survival 

and function.  Experimental evidence and mathematical models demonstrate that 

oxygen concentration decreases radially within cylindrical or spherical devices due to the 

consumption of oxygen by the encapsulated cells [89-92].  Therefore, if oxygen levels 
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are insufficient at the site of transplantation, cell density must be reduced as device 

diameter increases to minimize hypoxia of centrally located cells.  Even sublethal levels 

of hypoxia can have deleterious effects on ATP-dependent cell functions, such as insulin 

secretion [93] and may also induce expression of inflammatory mediators [1]. 

Consequently, the number of cells that may be transplanted within a given microcapsule 

is limited both by device size and the related metabolic profile of the donor cells, often 

leading to an increase in cell transplant volume and an associated increased incidence 

of device defects [94] and surgical risk [95].  

Effective cell-based therapy often relies on the ability of transplanted cells to 

respond to physiological stimuli in a concentration- and time-dependent manner [96].  

The characteristic time for diffusion through a sphere of radius, R, scales as R2/D, where 

D is the diffusivity of the solute through the encapsulation matrix and/or permselective 

membrane [97].  Therefore, cells in the center of the device will experience a given 

solute concentration at a later time than those on the periphery, leading to a lag in 

response time [92].  Moreover, depending on the pore size and other physiochemical 

properties of the immunoisolation membrane and cell immobilization matrix, the 

diffusivity of important solutes such as glucose, insulin, and oxygen may be substantially 

less than their diffusivity in water [92, 98-101], further delaying responses as compared 

to those observed for non-encapsulated tissue.  This is perhaps most clearly illustrated 

by microencapsulated islets, where the distance between the capsule surface and outer 

cell layer of the islet may be on the order of 100-400 µm, creating a void space which 

glucose and insulin must cross prior to transport in or out of the device.  Indeed, delayed 

in vitro insulin secretion in responses to step changes in glucose have been observed for 

a variety of different capsule formulations [85, 102-105].  Decreasing capsule size has 

been shown to minimize this delay [106-108].  
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Arguably more detrimental than diffusion limitations inherent to conventional 

microcapsules are constraints imposed by the transplant sites necessary to 

accommodate the volume of microencapsulated cells.  For example, current clinical islet 

transplantation protocols require ~600-700 thousand islets, a volume of roughly 5-10 ml 

[18].  In contrast, a current clinical trial using islets entrapped in 500 µm microcapsules 

requires a transplant volume of 50 ml [109], representing approximately a 5-10 fold 

increase in transplant volume.  Consequently, most microencapsulated cells have been 

transplanted into sites that have a relatively limited vascular supply, such as the 

omentum [110, 111] or peritoneal cavity [109, 112-114].  The anatomy of the peritoneal 

cavity does not facilitate instantaneous transport of insulin or glucose to and from the 

systemic circulation, as insulin must be absorbed by the peritoneum and extracted by 

the liver [115, 116].  As such, insulin production within the peritoneal cavity results in a 

delayed systemic response relative to intraportal administration [117, 118], with impaired 

metabolic control.  In response to a meal challenge, Tatarkiewicz et al. observed blunted 

C-peptide concentrations in animals transplanted with non-encapsulated, syngeneic 

islets in the peritoneal cavity, indicating that transplantation site is critical to proper 

maintenance of metabolic processes [103].  Though successful reversal of diabetes has 

been achieved despite impaired insulin and C-peptide responses [103, 104, 119], it is 

unclear whether metabolic control will be sufficiently robust to minimize the chronic 

complications of diabetes [120-122].  

Viability and function of microencapsulated cells transplanted into relatively 

avascular sites may be further exacerbated by partial pressures of oxygen which are 

40% of that found in arterial circulation [89].  Microencapsulated islet autografts retrieved 

from the peritoneum upon graft failure often have necrotic cores [123], a hallmark of 

hypoxia [1].  Interestingly, core necrosis may be observed even in the absence of 
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encapsulation [123], corroborating previous findings that the peritoneal cavity provides a 

sub-optimal environment for islet transplantation [124-126]. 

 Transplantation of microencapsulated islets into the portal bed. Though 

several clinical trials and large animal studies have demonstrated the potential efficacy 

of intraperitoneally transplanted encapsulated islets [109, 112-114, 127], the 

International Islet Registry reports that, compared to other sites, transplantation of islets 

into the portal vein is associated with the highest success rate one year after 

transplantation [128].  Thus, the portal bed remains the clinically preferred site for islet 

transplantation [10, 18, 19]. While, as discussed previously, direct islet-blood contact has 

been shown to mediate thrombosis [54-56], the portal vein offers a oxygen and nutrient 

rich environment and provides physiologically normal drainage of insulin, minimizing 

delayed insulin secretion in response to glucose. However, most conventional 

microcapsules are not suitable for transplantation into microvascular beds due to their 

large diameter [129-131].  Intraportal infusion of 420  µm microparticles has been shown 

to result in dangerous elevations of intraportal pressure and, in some instances, 

increased mortality in animal models [130].  Bottino et al. have observed impaired 

hyaluronic acid clearance after intraportal infusion of both islets and an equivalent 

volume of microparticles, indicating that portal vein endothelial cells are injured in 

response to particle infusion in a non-specific manner [48].  Schnedier et al. have 

recently demonstrated impaired engraftment of islets encapsulated in 350 µm 

alginate/Ba2+ micrcapsules transplanted into the portal vein compared to non-

encapsulated controls, apparently due to occlusion of small and medium sized portal 

venules and subsequent islet hypoxia [131].  Clearly, encapsulation strategies for 

transplantation of cells into microvascular beds must minimize transplant volume.  
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 An obvious but non-trivial approach to improving transport properties of 

microcapsules is to produce smaller capsules by optimizing the process parameters 

used in traditional microcapsule fabrications. Several groups have addressed the 

feasibility of intraportal transplantation of microcapsules slightly smaller than 

conventional microcapsules. Hallé and colleagues have generated 300-350 µm 

microcapsules using a high voltage electrostatic pulse system [130, 132, 133].  Injection 

of 10,000 315 µm diameter microcapsules into the portal vein of rats resulted in only 

modest and transient increases in portal pressure [130].  Similarly, Toso et al. 

intraportally injected 10,000 400 µm alginate/poly(methylene-co-guanidine) 

hydrocholoride microcapsules per kilogram body weight.  While portal pressures were 

elevated immediately post-implant, the increase was comparable to that observed during 

clinical islet transplantation and returned to normal after three months [134].  However, 

these [134] and other intraportally infused microcapsules [135] elicited a significant 

foreign body reaction.  The dose of microcapsules used in both of these studies is 

comparable to the islet dose used in clinical islet transplantation [18], demonstrating the 

potential to infuse 300-400 µm capsules in vascularized sites.  However, decreasing the 

size of alginate microcapsules from 800 to 500 µm is associated with a ~4 fold increase 

in the percentage of incompletely encapsulated islets [136].  Host response to even 2-

10% of encapsulated islets has been shown to result in destruction of 40% of the graft 

[123, 137].   

 Conformal coatings via fluidic entrainment and interfacial precipitation. To 

circumvent limitations associated with random entrapment of cell aggregates within 

microparticles, several investigators have deposited coatings of defined thickness that 

conform to surface of the cell or tissue.  Transplant volume is, therefore, defined only by 

the size of the object being coated and the thickness of the coating, significantly 
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reducing void volume while retaining the presence of a polymer barrier to provide 

protection. 

Fluidic entrainment of polymer solution around cell aggregates followed by 

interfacial precipitation of the polymer has been most commonly utilized to generate 

conformal coatings on cell aggregates.  In light of the promise and widespread use of 

alginate-based microcapsules, Zekorn et al. [138], and subsequently Park et al. [139], 

have fabricated conformal alginate hydrogel coatings on the surface of individual 

pancreatic islets.  To accomplish this, they utilized a discontinuous density centrifugation 

gradient composed of a top layer of islets suspended in sodium alginate, followed by 

denser spacer layers composed of dextran or Ficoll, one of which contained a divalent 

cation (CaCl2 or BaCl2).  During centrifugation, islets approach and deform the alginate-

dextran (Ficoll) interface, entraining a film of alginate around the islet, provided the 

drainage between the islet and interface is sufficiently slow.  When the islet and 

entrained alginate cross into the layer containing the divalent cation, the alginate is 

crosslinked, resulting in a 5-10 µm film of alginate that largely conforms to shape of the 

islet.  Islets coated in this manner demonstrated normal biphasic insulin secretion in a 

dynamic perfusion assay, indicating that islet function and viability are preserved and 

that the thin coating prevents the lag in insulin secretion often observed with larger 

alginate microcapsules [138].  In a similar manner, Sefton and colleagues have used 

density centrifugation to coat islets [140] and HegG2 cell aggregates [141] with water 

insoluble poly(hydroxyethyl methacrylate-co-methyl methacrylate) (HEMA-MMA) co-

polymers by interfacial precipitation, generating polymer films as thin as 1.5 µm.  The 

non-aqueous nature of HEMA-MMA is anticipated to improve stability relative to 

aqueous hydrogels, which are susceptible to hydrolytic degradation.  However, 

conformal coating of cells with HEMA-MMA results in a significant degree of cell death, 

owing to the need to expose cells to an organic solvent (polyethylene glycol, MW 200 
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Da) [142].  Recently, improved cell viability has been observed by decreasing coating 

times and pre-encapsulating cells in agarose beads prior to HEMA-MMA conformal 

coating to minimize exposure to non-aqueous solvents [142].   

Emulsification has also been used to generate a conformal coating on islets and 

cell aggregates [143, 144].  Calafiore and colleagues placed islets into an 

alginate/polyethylene glycol (PEG)/Ficoll emulsion, whereby alginate-containing Ficoll 

droplets suspended in a continuous PEG phase, coalesced on the islet surface, 

engulfing individual islets in a layer of alginate, which was subsequently crosslinked with 

calcium chloride and coated with a poly(L-ornithine)/alginate bilayer [143].  This 

conformal barrier prevented direct cell-islet and antibody-islet contact, and did not impair 

insulin in response to glucose stimulation [129].  Leung et al. have recently optimized 

this emulsion process to minimize the incidence of incomplete and non-uniform coating, 

and have coated cell clusters with 20-25 µm thin films of alginate  [144]. Importantly, 

conformally coated canine islets transplanted intraportally into a porcine model were 

viable and free of inflammatory reaction 15 days post transplant; however, a dense 

inflammatory infiltrate was observed 15 days later [145]. Nonetheless, these studies 

demonstrate the feasibility using conformal barriers in intravascular cell transplantation.  

Selective withdrawal of one fluid through a second immiscible fluid has recently 

been used to encapsulate pancreatic islets  [146].  Islets suspended in PEG-diacrylate 

were layered onto a more dense immiscible oil phase, and fluid was withdrawn through a 

tube placed immediately below the interface. At an appropriate flow rate, the PEG-

diacrylate solution, containing islets, was entrained in a thin spout within the oil phase. 

When the diameter of an islet is greater than that of the spout, surface tension causes 

the spout to break at both ends, leaving a thin layer of polymer solution around the islet. 

PEG-diacrylate is subsequently photocrosslinked, resulting in ~10 µm thick coatings 

independent of the size of the encapsulated islet. The investigators found it necessary to 
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repeat this process in order to prevent coating defects, ultimately generating ~20 µm 

thick coatings. In principle, sequential coating may allow for the generation of composite 

coatings with each layer having independent properties designed to elicit a preferred 

biological response. For example, the authors cite examples in which the outer layer 

may contain anti-inflammatory or pro-angiogenic molecules, while the inner layer may 

contain molecules to improve islet function. The authors found that two-layer conformal 

coatings inhibited the transport of a 140 kD macromolecule and enabled normal dynamic 

insulin secretion in response to glucose stimulation. Despite these promising results, 

~75% of islets were lost during the coating process, a problem that must be remedied in 

light of donor shortage for human islet transplantation. Moreover, scalability of the 

technique to allow for encapsulation of a clinically relevant number of islets in a timely 

manner must be addressed.  

 Conformal coating via interfacial polymerization. Conformal coating 

strategies have also utilized the islet surface as a template upon which coatings may be 

grown or chemically deposited.  Hubbell and colleagues have generated ~35-50 µm 

thick PEG-diacrylate coatings on both porcine [147-149] and human [150] islets through 

a process of interfacial polymerization. In this polymerization scheme, Eosin Y, a 

photoinitiator, is non-specifically adsorbed to the islet surface, and islets are placed in a 

solution containing PEG-diacrylate and triethanolamine. Upon illumination with light, 

eosin Y is excited and donates an electron to triethanolamine, which initiates the free-

radical polymerization of PEG diacrylate at the islet-macromer interface [148].  Through 

parametric optimization of key process variables, greater than 90% islet viability and 

encapsulation efficiency was reported [148], and conformally coated islets were shown 

to behave comparably to non-coated islets in a dynamic glucose perfusion experiment 

and intraperitoneal glucose tolerance test, respectively [147].  Preclinical trials in diabetic 
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cynomolgus moneys and baboons demonstrated function of subcutaneously 

transplanted conformally coated islets for up to 20 months, despite discontinuation of low 

dose immunosupression (cyclosporine) one month post transplant [150]. This technology 

is currently the basis for phase I/II clinical trials by Novocell for encapsulated human islet 

allografts, which began in 2005 [151].  Although patients are currently receiving 

transplants in a subcuateous site, the low-void volume of the graft and the high blood 

compatibility of PEG may also facilitate transplantation into the portal bed.  

 Molecular camouflage. While conformal coatings on cell aggregates offer a 

significant decrease in void volume relative to conventional microcapsules, cell 

encapsulation may, in principle, be accomplished using coatings or membranes of 

submicron, or nanoscale, thickness.  A common approach to generating such barriers 

has been through immobilization of PEG chains to the cell or tissue surface, creating a 

molecular barrier of PEG to prevent molecular recognition between cell surface 

receptors and soluble ligands [13, 152-157].  This has generally been accomplished 

through covalent coupling of PEG to amines of cell surface proteins or carbohydrates, or 

by direct insertion of PEG-lipid conjugates into the cell membrane [157].  PEG is a 

hydrated, flexible polymer chain due to repeating, highly mobile, ether units, which 

allows the polymer chain to act as a steric barrier on the cell surface [158]. Through 

proper control of polymer chain length and surface grafting density, cell surface 

PEGylation has been shown to camouflage antigenic sites, alter surface charge, and 

attenuate cell-cell and receptor-ligand interactions [159].  In an effort to create a 

universal red blood cell (RBC) donor, PEGylation of RBCs has been shown to mask 

major and minor blood group antigens from host antibodies [154, 160, 161].  Evidence 

has recently emerged that conjugation of PEG to human peripheral blood mononuclear 

cells [153] and isolated murine splenocytes [152] can interrupt a number of receptor-
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ligand interactions important in allorecognition, including weakening CD28-B7 

costimulation, resulting in T-cell apoptosis.  Furthermore, transplantation of PEGylated 

C57BL/6 splenocytes into lethally irradiated Balb/c mice significantly abrogated donor T-

cell proliferation and improved survival rates in a model of graft versus host disease 

relative to non-PEGylated controls [152].  

Based on such promising findings, several groups have demonstrated that PEG 

can be grafted to islets without compromising viability or function [155, 156, 162] and 

have began to explore whether or not PEG grafting provides a mechanism of preventing, 

or at least attenuating, host response to both allo- [163-168] and xenografts [13, 162].  

Byun and colleagues have recently reported some efficacy of this strategy in a rat 

allograft model of islet transplantation into the kidney capsule [165-168].  In their most 

recent experience, islets were serially PEGylated three times in an effort to increase 

PEG surface density and improve uniformity [165].  In contrast to non-PEGylated 

controls, which all mice rejected within one week, 3 of 7 recipients transplanted with 

PEGylated islets provided maintenance of normoglycemia for more than 100 days 

without any immunosuppression.  Histological evaluation demonstrated that PEGylation 

prevented graft infiltration by host immune cells, a protective mechanism that may be 

operative in intraportal transplantation as well.  Similarly, Contreras et al. have used 

islet-surface PEGylation in a xenogenic model of intraportal islet transplantation [13].  

While the authors did not monitor engraftment beyond two weeks, animals that received 

islets treated with PEG presented significantly better control of glucose than animals 

receiving non-modifed islets. PEG with a molecular weight of 5 kD performed slightly 

better than 2 kD PEG, and capping of surface grafted PEG with albumin proved most 

efficacious. Though this effect was attributed to shielding of islets from complement and 

xenoreactive antibodies [13, 162], it is conceivable that TF expressed on the islet 
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surface was also masked. Indeed, Scott and Hering have reported similar results in an 

allograft model [158].  

Despite these encouraging results, it is unclear whether or not surface grafted 

PEG will remain stable enough to provide protection for the anticipated lifetime of the 

transplant. Covalently modified cell surfaces are likely to be turned over and remodeled 

with time due to endocytosis and/or shedding of PEG-conjugated cell surface 

macromolecules. Moreover, PEG on the surface of cells with a finite lifecycle is likely to 

be lost and replaced with fresh tissue, thereby restoring immunogenicity [158].  Lee et al. 

have demonstrated via avidin staining of biotinylated PEG, that PEG is present for at 

least one month [168], but further time points were not explored. The efficacy of 

PEGylation may also be limited, in part, by the lack of a defined pore structure and 

dependence on a steric exclusion effect to provide an immunoprotective barrier. 

However, the nanoscale thickness of such coatings does offer an important potential 

advantage relative to traditional encapsulation or conformal coating approaches.  

Stuhlmeir and Yin demonstrated that PEGylation of endothelial cells inhibited binding of 

immunoglobulins and TNF-α, and reasoned that perfusion of hearts with reactive PEG 

might attenuate hyperacute xenograft rejection [169].  Though in vivo results were 

discouraging, this study exemplifies the potential utility of nanoassembled coatings to 

immunoprotect individual cells within whole organs.  

 Early inflammatory events in the transplantation of encapsulated islets. 

While conventional microencapsulation strategies and conformal coatings might be used 

shield islet-derived tissue factor from contact with blood, some level of inflammation is 

likely to persist. As discussed previously, islets produce low molecular weight 

inflammatory mediators capable of diffusing across most cell encapsulation membranes, 

potentially triggering inflammatory cell recruitment and activation [102, 119, 170-173]. 
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Indeed, co-culture of isolated peritoneal macrophages and syngeneic islets 

encapsulated in alginate/PLL/alginate (APA) microcapsules mediated islet-specific 

macrophage activation accompanied by TNF-α and IL-1β release, suggesting that 

factors other than alloantigens are capable of diffusing across the capsular membrane to 

activate macrophages [174].  Significantly, co-culture of conformally coated islets and 

macrophages resulted in the production of several inflammatory mediators, including 

MIP-2, IL-1, TNF-α, and IL-6 [175].   

Moreover, encapsulation devices also subject to the foreign body response to 

implanted biomaterials, a dynamic biochemical process initiated by non-specific 

adsorption of proteins to the material surface, followed by recruitment of neutrophils and 

macrophages to the implant site, and the subsequent attachment and overgrowth of the 

device by macrophages, foreign body giant cells, and fibroblasts [53, 176-179].  While 

the severity of foreign body responses to cell encapsulation devices is dependent on 

transplantation site and material properties, such as surface charge, porosity, 

roughness, surface chemistry and free energy, and implant size [176], this generalized 

response has been observed on a variety of microcapsules [177], including the 

commonly employed APA microcapsule [180, 181]. For many years, the inherent 

biocompatibility of materials used in encapsulation devices was implicated as the 

principle cause for capsular overgrowth and subsequent graft failure [182]; accordingly, 

many groups focused their efforts on improving the biocompatibility of immunoisolation 

membranes and encapsulation devices. Surface PEGylation has been used to improve 

the biocompatibility of synthetic immunoisolation membranes [183, 184], as well as APA 

microcapsules [185].  Use of highly purified alginate of appropriate composition has 

improved the biocompatibility of alginate-based microencapsulation devices [186].  The 

use of polycations, in particular PLL, in membrane forming processes has been shown 
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to mediate adhesion of fibroblasts and macrophages [187] and induce cytokine 

production [188], and, consequently, many groups have recently abandoned use of 

polycations in microcapsule formulations [119, 189-191]. However, several polycation-

containing microcapsules have been optimized such that fibrotic overgrowth of empty 

capsules is minimized [105, 192-194].  Most notably, poly(L-ornithine) (PLO) and PLL 

containing alginate capsules are currently being utilized in clinical trials of encapsulated 

islets [109, 195].  

While early inflammatory responses clearly play a critical role in the destruction 

of non-encapsulated islets, elegant studies by de Vos and colleagues suggest that 

comparable mechanisms may be active in the failure of encapsulated islet grafts as well 

[123, 137, 174].  Examination of encapsulated islet allografts retrieved from the 

peritoneum revealed that only ~10% of capsules were overgrown with fibrotic tissue 

[123, 137, 192, 196]; however, this was accompanied by a 40% loss of viable cells within 

the first 4 weeks of transplantation [123].  Notably, encapsulated islet autografts 

performed comparably, suggesting that graft failure was mediated by non-specific 

mechanisms [192, 196].  Histological evaluation indicated that activated macrophages 

were the predominant cell type attached to overgrown capsules, and co-culture of 

macrophages and encapsulated islets resulted in macrophage activation, cytokine 

production, and impaired islet function [123, 174].  Similarly, de Groot et al. co-cultured 

encapsulated islets overgrown with host cells retrieved from the peritoneum with freshly 

encapsulated islets at a 1:9 ratio (i.e. 10% overgrowth) [197].  Impaired insulin secretion 

in response to glucose, decreased beta cell replication, and increased cell necrosis 

occurred after 48 hours of coculture.  IL-1β, TNF-α, and nitrite, a marker for nitric oxide 

(NO), were elevated in the culture media and analysis of mRNA expression profiles of 

encapsulated islets suggested that NO mediated islet damage [197].   While some 

immunoisolation membranes have been reported to protect cells from IL-1β and/or TNF-
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α [102, 172], blockade of free radical diffusion is not likely.  Indeed, Wiegand et al. and 

Chae et al. have demonstrated that, despite its short half-life, NO can destroy 

encapsulated islets [198, 199].  This has recently been supported by a mathematical 

model of free radical diffusion through a spherical matrix containing pancreatic islets 

[200].  Not surprisingly, depletion of macrophages improves engraftment of both 

encapsulated and non-encapsulated cells [48, 201].  Hence, non-immune, inflammatory 

responses are at least partially responsible for limited survival and function of 

encapsulated islets.  

 

 1.2.3. Emerging Strategies to Inhibit Thrombotic and Inflammatory 

Responses  

 Pre-transplant manipulation of islet inflammatory pathways. Through 

appropriate culture conditions and additives, cell signaling processes may be 

manipulated to downregulate expression of islet-derived prothrombotic and inflammatory 

mediators [75, 77, 202-205]. Use of specially formulated culture media [203] or 

supplementation with the vitamin nicotinamide [202] has been shown to downregulate 

TF and MPC-1 production by islets. Matsuda et al. have recently demonstrated that 

incubation of islets with the p38 pathway inhibitor, SB203580, for one hour prior to 

transplantation suppressed IL-1β, TNF-α, and iNOS expression by islets, markedly 

increasing the diabetes reversal rate after transplantation of a marginal islet mass [75]. 

Additionally, signaling pathways may be modulated to reduce islet susceptibility to 

cytokine or nitric oxide mediated damage [36, 206-209]. Pre-transplant overnight culture 

with the anti-inflammatory agent Lisofylline has been shown to reduce proinflammatory 

cytokine-induced islet apoptosis, thereby allowing insulin independence to be achieved 

using 30% fewer islets [208]. As islet culture and shipping are being used more 
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frequently in clinical islet transplantation [12, 21, 25, 210], supplementation of media with 

modulators of inflammatory pathways should provide a facile approach for abrogating 

islet-initiated thrombosis and inflammation.  

 Systemic administration of anticoagulant and anti-inflammatory agents. 

While the immunosuppressive agents administered under the Edmonton Protocol are 

effective T- and B-cell inhibitors [18, 211], they appear to have minimal impact on innate 

inflammatory responses against islets mediated principally by neutrophils and 

macrophages. Therefore, adjunctive administration of anticoagulant and/or anti-

inflammatory agents presents a rational strategy for improving islet engraftment. Table 

1.1 summarizes notable systemic anticoagulant and anti-inflammatory therapies which 

have improved early outcomes in animal models of islet transplantation. Renal 

subcapsule transplantations have also been included as the efficacy of such therapies 

may translate to intraportal transplantation despite potential differences in the 

pathophysiology of early graft destruction. For example, pravastatin [212, 213] and 15-

deoxyspergualin [214, 215] have proven effective in both kidney and intraportal 

transplant models. Nonetheless, a need exists to evaluate the efficacy of anti-

inflammatory agents in the proper clinical context.  

 While anticoagulants such as melagatran [69], heparin [54], and N-acetyl-L-

cysteine [216] have demonstrated efficacy in vitro, few investigations have adequately 

explored the efficacy of systemic anticoagulant therapies in vivo [45, 217, 218]. 

Contreras et al. have recently demonstrated that intravenous administration of activated 

protein C (APC) dramatically inhibited interhepatic fibrin deposition, portal vein 

endothelial cell activation, cytokine production, and leukocyte infiltration, consequently 

reducing the incidence of islet apoptosis and increasing the rate of conversion to 

euglycemia after transplantation of a marginal islet mass [45]. Interestingly, single-dose 
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administration of APC an hour prior to transplantation dramatically attenuated 

inflammatory events 6-12 hours later. This is particularly compelling given the relatively 

short half-life of APC (10-20 minutes) [219], suggesting that the portal bed may be 

“primed” to receive islets. Yasunami et al. have demonstrated this phenomenon through 

repeated administration of the glycolipid α-galactosylceramide prior to transplantation, a 

process that dramatically reduces early islet loss through inhibition of Vα14 NKT cell-

dependent IFN-γ production by neutrophils [46]. 

 In contrast to immunosuppression [211], effective inhibition of deleterious early 

inflammatory responses may be achieved with short-course therapy.  In a murine model 

of intraportal islet transplantation, Satoh et al. have recently shown that islet dose may 

be reduced four-fold through simultaneous blockade of IL-1β, TNF-α, and IFN-γ in the 

four days post-transplant [50].  Similarly, short-course oral administration of Pravacol, an 

FDA approved cholesterol lowering drug, has been shown to reduce the number of islets 

required to reverse diabetes in a canine autograft model [220]. While single dose or 

short term therapy holds considerable promise for improving the outcome of islet 

transplantation, challenges remain to find therapeutics and treatment regimens that 

minimize adverse complications.  

 Localized protection through re-engineering the islet-host interface. As 

adverse side effects of systemic anticoagulant and anti-inflammatory therapy may limit 

their potential therapeutic impact, recent efforts have focused on developing strategies 

to locally attenuate thrombosis and inflammation through both passive and active 

mechanisms.  A promising passive approach has been to block tissue factor (TF) 

expressed on the islet through pre-incubation of islets with site inactivated fVIIa [55] or 

anti-TF antibody [55, 221]. Consistent with its role as a critical initiator of inflammation in 

islet transplantation, TF blockade has been shown to inhibit thrombotic responses and 
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improve islet survival both in vitro [55] and in vivo [221]. As microencapsulation devices 

and conformal coatings may be designed prevent cell-cell contact and dramatically 

impede diffusion of antibodies and other macromolecules to their respective targets on 

the islet surface [85, 87, 88, 222], these studies lend credence to the concept of 

generating polymeric barriers that shield islet-associated TF.  

 Perhaps more importantly, several investigators have begun to explore 

generation of bioactive barriers to thrombosis and inflammation. Heparin, an endothelial 

cell surface glycosaminoglycan, provides one such biochemical barrier through its ability 

to enhance the capacity of cofactor II and antithrombin to inactivate thrombin. Moreover, 

heparin can inhibit the formation of nitric oxide through its capacity to bind superoxide 

disumtase [223] and has been shown to limit complement activity [224-226]. Korsgren 

and colleagues have recently employed biotin/avidin interactions to immobilize 

macromolecular heparin complexes to the surface of islets [227]. Significantly, surface 

heparinization of intraportal islet grafts reduced TAT production and early islet damage 

in an allogenic porcine model.  In light of the significant thrombotic response observed 

after clinical islet transplantation [55, 56, 60], where heparin is delivered systemically 

during islet infusion [18, 25], these findings potentially illustrate the increased therapeutic 

efficacy achieved through local delivery of anticoagulants to the portal bed. Direct 

comparison between delivery of islet-grafted and systemic heparin will be necessary to 

unequivocally demonstrate this concept. 

 While thrombin plays a key role in directing inflammatory responses, local 

release of adenine nucleotides, including ATP and ADP, from activated endothelium and 

platelets further potentiate proinflammatory and prothrombotic events. CD39, a 

transmembrane protein expressed on endothelial cells, regulates these events through 

its capacity to catalyze the degradation of ATP and ADP to AMP [228, 229]. Dwyer et al. 

have recently generated transgenic mice which express human CD39 on pancreatic 
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islets. These islets were found to have increased ATPase activity compared to wild-type 

controls and a consequent capacity to inhibit islet-mediated coagulation [230]. Similarly, 

genetic engineering approaches have been used to induce expression of the potent 

anticoagulant hirudin [231] as well as the anti-inflammatory IL-1ra [232, 233], an inhibitor 

of IL-1β action that has improved islet engraftment when administered systemically 

[234]. Both genetic engineering [235] and cell surface chemistry approaches [236] have 

been used to display Fas ligand (FasL) on the islet surface, a strategy which could 

improve early outcomes of islet transplantation by local induction of neutrophil and 

macrophage apoptosis via the Fas-FasL pathway [237, 238].  

Recent efforts have also focused on integrating anti-inflammatory capabilities into 

cell encapsulation devices.  Loading of microcapsules with anti-inflammatory molecules, 

for example dexamethasone [239], offers a simple approach, but may be limited by 

undesirable release kinetics and/or cytotoxic intracapsular concentrations. Co-

encapsulation of cells and drug delivery vehicles offers a rational alternative for 

controlled delivery of anti-inflammatory agents.  Luca et al. co-encapsulated cellulose 

acetate microspheres (30-70 µm) containing the antioxidant vitamin D3 with rat islets in 

alginate/PLO microcapsules [240]. Similarly, Ricci et al. found that microcapsules 

charged with 5 µm polyester microspheres releasing the non-steroidal anti-inflammatory 

drug ketoprofen reduced the foreign body response to polycation coated microcapsules 

[241].  

Encapsulated cells may be further protected through immobilization of cells or 

molecules that scavenge, inhibit, or metabolize cytotoxic molecules that diffuse across 

the barrier.  Wiegand et al. have demonstrated that coencapsulation of islets with 

autologous erthyrocytes within alginate capsules provided nearly complete protection 

from macrophage-mediated cell lysis due to the capacity of erthyrocytes to scavenge NO 

and/or convert it to nitrate [199].  Recently, Chae et al. have extended this concept, 
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replacing erthyrocytes with hemoglobin crosslinked with PEG.  APA capsules containing 

crosslinked hemoglobin protected rat islets and RINm5F insulinoma cells from nitric 

oxide mediated cellular damage [198]. Significantly, after transplantation of a suboptimal 

mass of encapsulated islet xenografts these microcapsules were found to prolong 

normoglyemia and improve glucose clearance relative to capsules formulated without 

crosslinked hemoglobin [242].  While this effect may have also been mediated by 

improved oxygen tension in the capsule [242, 243], this study exemplifies the potential 

efficacy of actively anti-inflammatory cell encapsulation devices.  
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CHAPTER 2 

Layer-by-Layer Assembly of a Conformal Nanothin Poly(ethylene glycol) 

Coating for Intraportal Islet Transplantation‡ 

 

2.1.  INTRODUCTION 

 Islet transplantation has emerged as a promising treatment for diabetes [26]. 

However, widespread clinical application of islet transplantation remains limited, in part, 

by the deleterious side effects of immunosuppressive therapy necessary to prevent host 

rejection of transplanted cells [247]. Decades of extensive research have led to the 

development of semipermeable microcapsules capable of protecting donor cells from the 

host immune system while allowing transport of glucose, insulin, and other essential 

nutrients [85, 87, 248]. To date, most microencapsulation approaches have employed 

400-800 µm diameter microcapsules of diverse composition, formed via various drop 

generating processes, to randomly entrap 50-250 µm diameter islets [87, 182, 222]. 

Unfortunately, the relatively large size of conventional microcapsules imposes 

consequential mass transport limitations, and produces transplant volumes not suitable 

for infusion into the portal vein of the liver [129-131], the clinically preferred and currently 

most successful site for islet transplantation [26, 128].  Consequently, most 

microencapsulated islets are transplanted into sites with a limited vascular supply, such 

as the omentum [111] or peritoneal cavity [109, 113, 114], which ultimately contributes to 

                                                 

 
 
‡Reproduced with permission from Wilson JT, Cui W, Chaikof EL. Layer-by-layer 
assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano 
Letters 2008;8:1940-1948. Copyright 2008 American Chemical Society.  
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cell hypoxia and subsequent graft failure [137]. Therefore, encapsulation strategies for 

intraportal islet transplantation must minimize capsule void volume.  

 To reduce capsule size, several investigators have developed approaches to 

deposit coatings of defined thickness that conform to the surface of individual islets [141, 

145, 146, 148]. Transplant volume is, therefore, defined only by the size of the islet and 

the thickness of the coating, significantly reducing void volume while retaining the 

presence of a protective polymer barrier. Such conformal coatings have been fabricated 

using a number of processes including emulsification [145], discontinuous gradient 

density centrifugation [141], selective withdrawal [146], and interfacial polymerization 

[148] to generate 5-50 µm thick polymeric coatings. Attempts to further reduce coating 

thickness often lead to incomplete encapsulation or coating defects. Additionally, islet 

loss [146] and limited process scalability [141] are obstacles that must be addressed to 

coat a clinically relevant number of islets. 

 Layer-by-layer (LbL) polymer self assembly has emerged as an attractive 

alternative to traditional thin film fabrication techniques due to its ability to generate films 

of nanometer thickness on chemically and geometrically diverse substrates [249-251].  

Of particular relevance to cell encapsulation, film properties may be tailored to inhibit 

molecular recognition between complementary molecules on opposite sides of films. For 

example, Caruso et al. assembled multilayer films of poly(sodium styrenesulfonate) and 

poly(allylamine hydrochloride) on the surface of catalyase crystals to protect the 

encapsulated enzyme from protease degradation [252].  Similarly, Hubbell and co-

workers have assembled alginate/poly(L-lysine) films on gelatin to limit cell adhesion to 

the proteinaceous surface [253], while Thierry et al. have coated deendothelialized blood 

vessels with chitosan/hyaluronic acid films to inhibit platelet deposition [254].  Moreover, 

through proper control of film constituents, multilayer films may also be used to elicit 

specific biochemical responses. Enzymes and other proteins [255, 256], DNA [257], lipid 
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vesicles [258], drug-containing nanoparticles [259], and polymers covalently 

functionalized with bioactive motifs [260, 261] have been used as film components to 

control the local biochemical milieu. Such capabilities hold considerable promise for 

generating biologically active cell and tissue coatings with the potential to abrogate 

deleterious inflammatory and immune responses to encapsulated islet grafts [222]. All 

told, LbL polymer self assembly represents a rational approach for coating cells and cell 

aggregates with nanothin films of tailored surface chemistry, permeability, and 

bioactivity. In this report, we describe a nanothin, PEG-rich conformal coating that can 

be assembled on individual pancreatic islets via a process of layer-by-layer polymer self 

assembly.  This research establishes an important step towards the design 

nanoassembled structures for cell encapsulation and surface modification, and 

importantly, to our knowledge, is the first study to report in vivo survival and function of 

nanoencapsulated cells or cell aggregates. 

 

2.2. MATERIALS AND METHODS 

Film components. Poly(L-lysine hydrobromide) (PLL, MW 15-30 kD), FITC-

labeled PLL (FITC-PLL, MW 15-30 kD), poly(allylamine hydrochloride) (PAH, MW 15 

kD), poly(diallyldimethylammonium choloride) (PDDA, MW 200-350 kD), protamine 

chloride, poly(sodium 4-styrenesulfonate) (PSS, MW 70 kD), streptavidin (SA), Cy3-

labeled SA (Cy3-SA), and FITC-labeled SA (FITC-SA) were purchased from Sigma-

Aldrich (St. Louis, MO). Sodium alginate (UP LVM) was purchased from NovaMatrix 

(Norway).  

Poly(L-lysine)-g-poly(ethylene glycol)biotin (PPB) was synthesized as described 

elsewhere [262] with minor modifications. PLL was dissolved at 40 mg/ml in 50 mM 

sodium tetraborate buffer (pH 8.5). Biotin-PEG3.4kD-NHS (Nektar Therapeutics, 

Huntsville, AL) was then slowly added under vigorous stirring, and allowed to react for 6 
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hours. The solution was transferred to dialysis tubing (Spectra/Por MWCO 12-14 kD, 

Spectrum Laboratories, Rancho Dominguez, CA) and dialyzed first against phosphate 

buffered saline (pH 7.4, 2 x 24 hours) and, subsequently against distilled deionized 

water (2 x 24 hours). The product was then lyophilized until completely dry.  

Biotin-PEG3.4kD-NHS was added at appropriate stoichiometric amounts to 

generate PPB with a grafting ratio, x, of 2.5 and 5, where grafting ratio is defined as 1 

grafted PEG-biotin chain every x repeat units. Grafting ratio of PPB was determined 

using 1H NMR [262] (INOVA 600) by taking the ratio of chemical shifts assigned to 

biotin-PEG linked to lysine (3.05 ppm, m, -CH2NHC(O)OCH2-)  and the lysine backbone 

(4.25 ppm, m, -NHC(O)CH-). To facilitate identification of PPB on islets with confocal 

microscopy, a fraction of PPB was labeled with FITC (Pierce Biotechnology, Rockford, 

IL) according to manufacturer’s instructions. FITC was added at an appropriate 

stoichiometric ratio to ensure labeling of less than 1% of backbone amines. Non-reacted 

FITC was removed via dialysis (Slide-A-Lyzer Dialysis Cassette, 3.5 kD MWCO, Pierce 

Biotechnology, Rockford, IL).  

Animals.  Male C57BL/6J (B6), and B10.BR-H2k H2-T18a/SgSnJ (B10) mice (8 

weeks old, Jackson Laboratory Bar Harbor, ME) were used as islet recipients and 

donors, respectively. All animal studies followed local Institutional Animal Care and Use 

Committee guidelines at Emory University.  The B6 mice were made chemically diabetic 

by intraperitoneal injection of 200 mg/kg streptozotocin in citrate buffer saline and 

screened for the development of diabetes.  Mice whose non-fasting blood glucose was 

over 250 mg/dl on two consecutive measurements were considered diabetic [263].  

Islet isolation.  Murine islets. Pancreatic islet isolations were performed, as 

previously described [264]. B10 mouse pancreata were removed after distension with 

collagenase P (1 mg/ml, Roche, Indianapolis, IN) through the common bile duct. 
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Following digestion, islets were purified by a Ficoll-Histopaque discontinuous gradient 

(Ficoll: 1.108, 1.096, and 1.037; Mediatech Inc., Manassas, VA).  Isolated islets were 

cultured for 48 hours in RPMI 1640 supplemented by 10% FCS, L-glutamine (2 mM), 

and penicillin (100 U/ml), streptomycin (100 µg/ml) and amphotericin B (0.25 µg/ml) 

(Mediatech Inc.), and media was changed daily. Human islets. Human islets were 

provided by the Cell and Tissue Processing Laboratory in the Emory University 

Transplantation Center and by the University of Illinois at Chicago Islet Cell Resource 

Center, and cultured 24-120 hours in Miami Medium #1A (Mediatech Inc.) prior to use.  

Islet coating. Islets (<1000) were placed into 12 mm cell culture inserts with 12 

µm pores (Millicell-PCF; Millipore, Billercia, MA). Prior to introduction of coating solution, 

islets were washed by adding 700 µl serum free RPMI 1640 to the insert, followed by 

gentle repeated tapping of the insert on a polystyrene surface to facilitate drainage of the 

wash solution through pores while retaining islets. The insert was placed into a well of a 

24 well plate (Corning Inc., Corning, NY) and 700 µl of coating solution was added to the 

cell culture insert.  After incubation in coating solution, the insert was removed from the 

well, solution was drained through the insert, and islets were washed four times as 

described above to ensure adequate removal of non-adsorbed polymer. To fabricate 

multilayer thin films, the process of polymer incubation and washing was repeated using 

appropriate polymer solutions and incubation times. To assemble PPB/SA multilayer 

films, islets were incubated in PPB for 15 minutes, washed four times with RPMI 1640, 

incubated in SA for 30 minutes, and washed again. This process was repeated, reducing 

the PPB and SA incubation times to 10 minutes after the formation of the first bilayer.  

Assessment of islet viability and function. Islet viability was assessed as 

previously described [148] with some modifications. Briefly, islets were incubated in 
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DPBS (Mediatech Inc., Manassas, VA) containing 4 µM calcein AM and 8 µM ethidium 

homodimer-1 (Molecular Probes, Eugene, OR) for one hour, and a representative 

number of individual islets (35-65) were imaged with two-channel confocal microscopy 

(Zeiss LSM 510 META; Carl Zeiss, Inc., Thornwood, NY). Confocal micrographs were 

analyzed using LSM5 Image Examiner software (Carl Zeiss, Inc.) to quantify the number 

of pixels corresponding to fluorescent emission from live (green) and dead (red) cells.  

Viability is expressed as the percentage of fluorescent pixels associated with emission 

from live cells. Human islet viability was further measured by a water soluble tetrazolium 

compound of MTS (3-[4,5, dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-

sulfophenyl]-2H-tetrazolium, inner salt) in the presence of phenazine ethosulfate (PES), 

as an intermediate electron acceptor (CellTiter 96® AQueous One Solution Cell 

Proliferation Assay, Promega, Madison, WI) as previously described [198] with minor 

modifications. Three hours after coating, groups of 150-200 islets were placed into wells 

of a 96 well polystyrene plate, washed with cell culture media, and finally suspended in 

150 µl media and 30 µl assay solution. After 2.5 hour incubation at 37°C, 100 µl of 

solution was removed and the absorbance at 492 nm was measured by a microplate 

reader. A standard curve relating islet number to absorbance at 492 nm was generated 

and used to determine the number of viable islets in a treatment or control group. 

Viability is reported as the percentage of viable islets within the group. In some 

instances, lactose dehydrogenase (LDH) release was measured as a marker of 

cytotoxicity (CytoTox 96® Non-Radioactive Cytotoxicity Assay, Promega). To monitor 

LDH release during exposure to PAH, groups of 75 islets were placed into 

microcentrifuge tubes, pelleted by low-speed centrifugation, and the medium exchanged 

with 60 µl PAH solution. As described previously [265], islets were resuspended in PAH, 

incubated for 5 minutes, and pelletted by low-speed centrifugation for 5 minutes; 50 µl of 
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supernatant was subsequently removed and LDH content determined according to 

manufacturer’s instructions. To monitor LDH release after coating, groups of 150 coated 

or uncoated islets were placed into wells of a 96 well polystyrene plate, washed with cell 

culture media, and finally suspended in 100 µl Miami 1A culture media for 3 hours at 

37°C. After incubation, 50 µl of solution was removed and LDH content determined 

according to manufacturer’s instructions.  LDH release is reported as microunits (µU) 

released/islet, where 1 U reduces 1 µmole pyruvate to L-lactate per minute.  

Islet function was evaluated by glucose-stimulated insulin secretion under static 

incubation. Ten islets were hand selected, placed in a cell culture insert in a 24 well 

plate, and pre-incubated in 1 ml of HEPES buffered RPMI 1640 (25 mM HEPES, 0.2% 

BSA) supplemented with glucose at 60 mg/dl glucose for one hour at 37ºC. Following 

pre-incubation, islets were rinsed and incubated in 1 ml for 1 hour, followed by another 

rinse and incubation in HEPES buffered RPMI 1640 containing 300 mg/dl glucose for an 

additional hour at 37°C. Samples were collected at the end of each incubation period, 

and insulin levels were determined using a mouse insulin ELISA kit (Mercodia, Inc., 

Winston Salem, NC).  

Film assembly and characterization on planar substrates. Quartz slides (0.5 

x 1 in.; Chemglass, Vineland, NJ) were cleaned by immersion in a H2SO4/H202 (7:3) bath 

for 1 hour and subsequently in a H2O/H2O2/NH3 (5:1:1) bath at 60°C for 30 minutes.  The 

surface was rinsed thoroughly in distilled water, incubated in 1% (w/v in water) PDDA 

(MW 100-200 kD, Sigma-Aldrich, St. Louis, MO) for 30 minutes, rinsed, and incubated in 

0.15% (w/v in phosphate buffered saline) sodium alginate (UP LVM; NovaMatrix, 

Norway) for 20 minutes to generate a negatively charged, carbohydrate-rich surface. 

PPB and Cy-3 labeled streptavidin were dissolved at 1 mg/ml and 0.1 mg/ml, 

respectively, in RPMI 1640 culture media. Planar surfaces were incubated in PPB for 15 
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minutes, rinsed 3x with 15 ml RPMI 1640, and then incubated in Cy3-SA for 30 minutes. 

Samples were again rinsed, and absorption spectra were recorded using a UV-vis 

spectrophotometer (Cary 50; Varian Inc., Palo Alto, CA). After the formation of the first 

bilayer, PPB and Cy3-SA incubation times were reduced to 10 minutes, and absorbance 

spectra were recorded after each Cy3-SA deposition. 

Intraportal islet transplantation.  Recipients were anesthetized via 

intramuscular injection of ketamine (87 mg/kg) and xylazine (13/mg/kg).  Prior to 

transplantation, a fraction of islets were removed and viability was assessed to ensure 

>90% viability. Two hundred and fifty (250) B10 islets were infused in a total volume of 

200 µl into the recipient liver through the portal vein using a 27 Ga insulin syringe, as 

previously described [266]. Mice undergoing islet transplantation were monitored by 

measuring nonfasting blood glucose daily for two weeks with using an ACCU-CHECK 

glucose monitor.  Euglycemia was defined as a nonfasting blood glucose less than 200 

mg/dl on two or more consecutive days.  B6 diabetic mice were randomly assigned into 

two groups that received either islets alone or islets coated with a (PPB/SA)8/PPB 

multilayer film.  

Statistics. Tests for statistical significance between the means of two groups 

were conducted with the Student’s t-test (two-tailed, homoscedastic). Tests between 

three or more groups were conducted with the one-way ANOVA followed by the Tukey 

HSD test. 
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2.3. RESULTS AND DISCUSSION 

 Polycation cytotoxicity limits PEM film assembly on islets. Polyelectrolyte 

multilayer (PEM) films, in particular poly(L-lysine) (PLL)/alginate PEM films, have been 

widely employed to confer permselectivity to conventional microcapsules [109, 186, 

192]. Therefore, it was hypothesized that such films could be assembled directly on the 

surface of pancreatic islets in an analogous manner, using the negatively charged cell 

surface as a substrate for film assembly.  Islets were first incubated with PLL (MW 15-30 

kD, 1 mg/ml in RPMI 1640) for 5 minutes, rinsed 3x with RPMI 1640, and subsequently 

incubated with alginate (2 mg/ml in RPMI 1640) for 5 minutes to form a single 

PLL/alginate bilayer.  Maintenance of cell viability is critical to effective islet 

transplantation and, accordingly, islet viability was assessed shortly after film formation 

using confocal microscopy to image a representative population of islets stained with 

calcein AM (live) and ethidum homodimer (dead). Formation of even a single 

PLL/alginate bilayer exerted significant toxicity. The toxicity of PLL, as well as many 

other polycations, towards a variety of cell types has been well documented [165, 267-

269]. In accord with these reports, incubation of islets with 1 mg/ml PLL for 15 minutes 

resulted in a ~60% decrease in islet viability relative to untreated controls (Figure 2.1). 

Hence, direct contact between PLL and islets significantly decreases viability and 

precludes the use of PLL to initiate film growth on the islet surface. The toxicity of 

several other commonly employed polycations, including poly(allylamine hydrochloride) 

(PAH), poly(diallyldimethylammonium chloride) (PDDA), and protamine was also 

assessed and all were found to exert significant toxicity after 15 minutes at 1 mg/ml; 

similar findings have been recently reported by Lee et al. [165]. To the contrary, Krol et 

al. maintain that a PAH/poly(sodium 4-styrenesulfonate)/PAH (PAH/PSS/PAH) film may 

be assembled on the surface of human islets without significantly influencing islet 

viability or function [265].  To explore this apparent inconsistency, human islets were 
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coated with a PAH/PSS/PAH multilayer using identical polyion properties (PAH: 15 kD, 

PSS: 70 kD), concentrations (2 mg/ml), incubation times (5 minutes), and solvent (RPMI 

1640, dissolved one day in advance) as previously reported. Islet viability was assessed 

after film formation via calcein AM and ethidium homodimer-1 (Live/Dead) staining and 

imaging with confocal microscopy (Figure 2.2A-E).  The majority of cells within islets 

coated with a PAH/PSS/PAH film were found to be non-viable (Figure 2.2B), as 

indicated by a significant decrease in intercellular esterase activity (live, green) and an 

increase in ethidium homodimer (EthD-1) staining (red, dead).  Consistent with the 

binding of EthD-1 to nucleic acids, punctate staining was distributed within cell nuclei 

(Figure 2.2D).  Indeed, image analysis of confocal micrographs revealed a significant 

difference in viability between untreated and PAH/PSS/PAH coated islets (Figure 2.2E).  

Comparable results were obtained when film assembly was performed on murine islets 

(data not shown).  The toxicity of PAH/PSS/PAH films was further confirmed through an 

MTS assay, which demonstrated that the viability of PAH/PSS/PAH coated islets was 

significantly less than that of untreated controls (30.7 ± 0.8% vs. 103.7 ± 8%, p < 0.01, 

Figure 2.2E).  These data were consistent with those obtained using an independent 

islet isolation (PAH/PSS/PAH: 29.9 ± 2.5%; control: 100.7 ± 11.0%).  As an additional 

confirmation of toxicity, the cytosolic enzyme, lactose dehydrogenase (LDH), could be 

detected in coating and wash solutions.  Specifically, islets were found to release 

significantly more LDH during the initial PAH coating step relative to those exposed 

solely to cell culture media, but otherwise treated in a similar manner (296 ± 21 vs. 4.7 ± 

4.2 µU/islet, p < 0.01, Figure 2.2F).  Additionally, LDH continued to leak from islets 

during a 3-hour period immediately after PAH/PSS/PAH coating, whereas significantly 

less was released from controls (76.8 ± 5.9 vs. 5.5 ± 0.6 µU/islet, p < 0.01, Figure 2.2F).  

Human islet isolations are highly variable by nature, and, consequently, the susceptibility 

of islets to toxic agents, including polycations, may depend on the unique characteristics 
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of an islet preparation or islet subpopulation, including size, viability, metabolic capacity, 

purity, and integrity of the peri-insular extracellular matrix.  Nonetheless, results obtained 

using three viability assays (calcein AM/EthD-1, MTS, and LDH) and three independent 

islet isolations obtained from separate transplant centers with extensive islet isolation 

experience, indicate that PAH/PSS/PAH multilayer films cannot be assembled on islets 

without significant adverse effects on islet viability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. (A) Islets were incubated with PLL, PPB[5], and PPB[2.5] at 1 mg/ml, and 
viability was assessed after various incubation times (mean ± SD, *p<0.05 compared to 
untreated controls). PLL exerted significant toxicity after only 15 minutes, while 
incubation with PPB[5] decreased islet viability slightly, but significantly, after 4 hours. 
PPB[2.5] did not reduce islet viability even after a 12 hour incubation (p>0.05). (B) 
Representative confocal micrographs of islets stained with calcein AM (green, viable) 
and ethidum homodimer (red, non-viable) overlaid on bright field micrographs 
demonstrate changes in islet morphology associated with polycation-mediated cell death 
(from left to right: PLL, PPB[5], PPB[2.5]).  
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Figure 2.2. PAH/PSS/PAH film assembly is toxic to human pancreatic islets. 
Representative confocal micrographs of (A) untreated and (B) PAH/PSS/PAH coated 
human islets stained with calcein AM (green, viable) and ethidum homodimer-1 (red, 
non-viable) overlaid on bright field micrographs (scale bar = 50 µm). (C) In a 
subpopulation of islets, coating with a PAH/PSS/PAH film resulted in considerable 
peripheral cell death, but a viable islet core (scale bar = 50 µm).   (D) Fluorescent 
emission associated with ethidium homodimer-1 staining demonstrates a punctate 
distribution consistent with binding to nucleic acids within islet cell nuclei (scale bar = 20 
µm). (E) Image analysis of confocal micrographs (Live/Dead) as well as viability 
assessment by MTS assay revealed a significant difference (*p<0.01) in viability 
between untreated (black bar) and PAH/PSS/PAH coated (grey bar) islets. (F) Lactose 
dehydrogenase (LDH) release from islets during deposition of the initial PAH layer (1st 
layer), as well as after formation of a PAH/PSS/PAH film (grey bars) was significantly 
greater (*p<0.01) than untreated controls (black bars), indicating that islet cell 
membranes are compromised as a result of PAH/PSS/PAH coating. 
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 Design of cytocompatible poly(L-lysine)-g-poly(ethylene glycol)biotin 

copolymers. Poly(L-lysine)-graft-poly(ethylene glycol) copolymers have been used to 

modify the surface of synthetic and natural implantable materials [270-274] and, 

importantly, have been reported to exert minimal toxicity towards fibroblasts in culture 

[270]. Therefore, to reduce the toxicity of PLL, NHS-PEG3.4kD(biotin) was grafted to 

primary amines on the PLL backbone to generate PLL-g[x]-PEG3.4kD(biotin) (PPB) graft 

copolymers [262, 275] with grafting ratios, x, of 5 and 2.5 (PPB[5] and PPB[2.5], 

respectively), where x is the average number of modified and unmodified lysine residues 

per grafted side chain. Islets were incubated with PPB[5] and PPB[2.5] at 1 mg/ml for 15 

minutes, 1 hour, 4 hours, and 12 hours and islet viability was assessed until significant 

decreases in islet viability were observed relative to untreated controls. Incubation of 

islets with PPB[5] resulted in a statistically significant (p<0.01) 6.5% decrease in viability 

after 4 hours which was largely due to death of cells on the islet periphery (Figure 2.1). 

While such small changes in viability may not have a significant impact on overall islet 

function or engraftment, death of peripheral cells and concomitant changes in islet 

morphology (Figure 2.1B) will likely compromise film assembly and properties.  By 

contrast, islets could be incubated in PPB[2.5] for at least 12 hours without adversely 

influencing islet viability or morphology (Figure 2.1). Therefore, cytotoxicity tends to 

decrease (PPB[2.5]<PPB[5]<PLL) with decreasing polycation charge density 

(PPB[2.5]<PPB[5]<PLL), a phenomenon in accord with previous findings [269]. The 

dramatic reduction in toxicity achieved with increased PEG grafting might be explained 

by differences in the three-dimensional arrangement of cationic monomers on the cell 

membrane. Ryser suggested that the membrane permeabilization potential of 

polyamines decreased as the space between amino groups increased [276]. 

Interestingly, it was speculated that a three-point attachment mechanism was necessary 

to invoke membrane pore formation, and, therefore, it is perhaps not coincidental that 
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the toxicity of PLL is abrogated as the grafting ratio decreases below 3 (i.e. charge 

neutralization of one in every three lysine residues). Alternatively, Hartmann et al. 

suggested that PLL transitions from a random coil in solution to an alpha helical 

conformation at the cell surface in order to maximize interfacial contact [277], a 

phenomenon that may be sterically interrupted by grafted PEG chains. 

 PLL-g-PEG(biotin) copolymers adsorb to surfaces through coulombic interactions 

between positively charged backbone lysine monomers and negatively charged 

surfaces, causing PEG chains terminated with biotin to extend into solution [262, 275]. 

To demonstrate adsorption of PPB[2.5] on islets, Cy3-labeled SA (Cy3-SA, 0.1 mg/ml, 

30 min) was used to identify accessible biotin groups. Incubation with PPB[2.5] (1 mg/ml, 

15 minutes) facilitated the specific binding of Cy3-SA to the islet surface (Figure 2.3A), 

as islets incubated with only Cy3-SA demonstrated no fluorescent emission (Figure 

2.3B). Islets incubated with non-modifed PLL (1 mg/ml, 15 minutes) prior to Cy3-SA 

demonstrated sporadic and concentrated domains of fluorescent emission (Figure 2.3C), 

likely a result of membrane permeabilization by PLL and subsequent diffusion of Cy3-SA 

into the cytoplasm [267]. Therefore, unlike PLL, PPB provides a foundation for initiating 

growth of multilayer thin films on the surface of viable pancreatic islets.  

 

 

 

 

 

Figure 2.3. PPB facilitates specific binding of streptavidin to the surface of pancreatic 
islets. (A) Islets incubated with PPB for 15 minutes and subsequently with Cy3-labeled 
streptavidin (Cy3-SA) demonstrated fluorescent emission around the islet periphery. 
Islets incubated in only Cy3-SA demonstrated no fluorescent signal (B), and treatment of 
islets with non-modified PLL prior to Cy3-SA resulted in discontinuous, concentrated 
domains of fluorescent emission (C) (scale bar = 50 µm). 
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 Assembly of nanothin films through layer-by-layer deposition of PPB and 

streptavidin. As an alternative to PEM film formation, receptor-ligand interactions have 

been used to fabricate multilayer architectures [278, 279]. A ligand-derivatized polymer 

adsorbed to a surface creates a ligand-rich interface capable of binding soluble 

receptors. Provided each receptor has multiple binding sites for the ligand, a fraction of 

binding sites may remain unoccupied, facilitating binding of the ligand-derivatized 

polymer and regeneration of a ligand-rich interface.  Such films have commonly been 

assembled through alternating deposition of biotin derivatized polycations and 

(strept)avidin [279-281]. Many of these films, however, have utilized polycations of high 

charge density [280-282], and, therefore, are likely unsuitable for assembly on living 

cells or tissues. Moreover, PEG-rich multilayer films have not been constructed in this 

manner. To determine if multilayer thin films could be fabricated through layer-by-layer 

deposition of PPB[2.5] and SA (Scheme 2.1), solid state spectroscopy was used to 

monitor the absorbance of Cy3-SA as a function of layer number. Figure 2.4 shows a 

series of representative absorption spectra, with each successive curve corresponding 

to a different bilayer. Plotting absorbance at 554 nm (Figure 2.4, inset), which 

corresponds to the amount of surface-bound Cy3-SA, as a function of layer number 

demonstrates that film growth occurs in a linear manner. This behavior is in accord with 

previously published spectroscopic measurements of biotin-PEI/avidin multilayer films 

[280].  From the approximate molecular dimensions of streptavidin (5.4 x 5.8 x 4.8 nm) 

[279], the molar extinction coefficient of Cy3 (1.3x105 M-1 cm-1), and the 

fluorophore:protein ratio of the Cy3-SA conjugate (7.0), the absorbance of a monolayer 

of Cy3-SA is estimated to be 5.7 x 10-3. The absorbance change per PPB/Cy3-SA layer 

was found to be 5.4 x 10-3, indicating that just under a monolayer of streptavidin is bound 

after each deposition.  
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Scheme 2.1. Assembly of PEG-rich, nanothin conformal islet coatings via layer-by-layer 
deposition of poly(L-lysine)-g-poly(ethylene glycol) (PPB) and streptavidin (SA). PPB 
interacts electrostatically with negatively charged cell surfaces, facilitating the binding of 
SA. Unoccupied biotin binding sites of immobilized SA allow a second layer of PPB to be 
added, thereby enabling incorporation of a second SA layer. This process may be 
repeated to generate thin films assembled via alternating deposition of PPB and SA. 
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Figure 2.4. PPB/SA multilayer thin films can be assembled on planar substrates. Solid-
state UV-vis spectroscopy was used to monitor film growth on quartz slides. Absorbance 
spectra recorded after each PPB/Cy3-SA bilayer deposition demonstrates a regular 
layer-by-layer growth pattern. Inset: absorbance at 554 nm (Cy3; mean ± SD) increases 
linearly with layer number through at least eight bilayers. 
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 Conformal coating of islets with PPB/SA multilayer thin films. Confocal 

microscopy was next used to demonstrate multilayer film growth on the surface of 

individual pancreatic islets (Figure 2.5). Islets were incubated in PPB[2.5] for 15 minutes, 

rinsed three times with culture media, and incubated in Cy3-SA for 30 minutes.  After 

formation of a single PPB[2.5]/Cy3-SA bilayer, islets were divided into two groups: one 

group was incubated in PPB[2.5] for an additional 15 minutes (Figure 2.5A) while the 

other was placed in RPMI 1640 (Figure 2.5B). Both groups were then incubated in FITC-

labeled SA (FITC-SA) for 5 minutes, and imaged with two-channel confocal microscopy. 

Receptor-ligand binding kinetics predicts that the initial rate of streptavidin binding 

increases with increased surface density of free biotin. Therefore, islets incubated with a 

second layer of PPB would be expected to bind more FITC-SA than islets that were not, 

due to regeneration of accessible biotin groups in the former. Indeed, fluorescent 

emission from FITC-SA was observed around the periphery of islets that were incubated 

with a second layer of PPB, while the signal was essentially absent for islets that were 

not. These observations indicate that multilayer architectures can be assembled on the 

surface of islets via alternating deposition of PPB[2.5] and streptavidin. 

 Live cell confocal microscopy was also used to assess the localization, 

distribution, and gross uniformity of PPB/SA multilayer films assembled on islets. Three 

dimensional reconstructions of serial optical sections of islets coated with a 

(PPB[2.5]/Cy3-SA)4 film (Figure 2.6) demonstrate that the film conforms to undulations 

on the islet surface, and is grossly uniform at the resolution used here.  Using Hoechst 

nuclear stain to identify individual cells within islets, FITC-labeled PPB (FITC-PPB), and 

Cy3-SA, confocal microscopy demonstrated that the film is localized both on the 

periphery of the islet (Figure 2.7A) as well as within the interstitial space between 

individual cells within the core of the islet (Figure 2.7B). Hence, all surfaces which are 

accessible to film constituents may be coated, reflecting the truly conformal nature of 
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such nano-assembled films, and demonstrating the potential to encapsulate and/or 

modify individual cells within a multicellular tissue such as islets. Importantly, film 

constituents were concentrated predominately on the surface of cells (i.e. in the 

extracellular space), as fluorescent emission from both Cy3-SA and FITC-PPB did not 

colocalize with cell nuclei, was not distributed throughout the cytoplasm of cells, and 

existed in discrete domains consistent with the extracellular architecture of isolated 

pancreatic islets. In contrast, FITC-labeled PLL (1 mg/ml, 15 minutes) was found 

colocalized with cell nuclei and distributed throughout the cytoplasm of individual cells 

(Figure 2.7C), which adopted an extended morphology, likely due to cell necrosis [269].  

PLL, and many other polycations, have been shown to induce pore formation in the 

plasma membrane, a phenomenon which often mediates cell death and enables 

transport of molecules, including the polycation itself, across the cell membrane [267, 

269, 276, 283]. The extracellular localization of PPB/SA films, in particular the PPB 

component, suggests that conjugation of PEG3.4kD(biotin) to the PLL backbone inhibits or 

reduces its capacity to form pores in the cell membrane and/or diffuse into the 

cytoplasm, consistent with the observed reduction in toxicity. Interestingly, Krol et al. 

also observed polycation (PAH) penetration into the cytoplasm of cells within islets [265], 

consistent with the cytotoxic effects exerted by PAH reported herein.  
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Figure 2.5. PPB/SA multilayer films can be assembled on individual pancreatic islets. 
After formation of a PPB/Cy3-SA bilayer, islets were either incubated with a second layer 
of PPB (A) or placed into cell culture media (B). Both groups were then incubated with 
FITC-labeled streptavidin (FITC-SA) for 5 minutes. Only islets incubated with a second 
layer of PPB (A) demonstrated fluorescence emission from FITC-SA due to regeneration 
of accessible biotin groups on the islet surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Three dimensional reconstruction of optical confocal microscope sections 
(0.5 µm) of the lower half of an islet coated with a (PPB/Cy3-SA)4 multilayer film. Each 
image is rotated ~24° from the previous (left to right, top to bottom). The film is grossly 
uniform and conforms to protrusions and indentations of the islet surface.  
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Figure 2.7. PPB/SA multilayer films assemble extracellularly. Islet cell nuclei were 
stained with Hoechst (blue) to identify individual cells within islets. Islets were coated 
with a (FITC-PPB/Cy3-SA)4 multilayer film, and confocal microscopy was used to identify 
film components. PPB and SA were colocalized on the surface of cells on the islet 
periphery (A) as well as in the interstitial space between individual cells within the core of 
the islet (B). Conversely, FITC-PLL was observed throughout the cytoplasm of cells and 
often colocalized with cell nuclei (C).  
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 Islet viability and function are not compromised by PPB/SA film assembly. 

As a consequence of cell encapsulation, diffusive transport of essential nutrients may be 

hampered, potentially resulting in decreased cell viability and/or improper temporal 

response to physiological stimuli [89]. Furthermore, fabrication of PPB[2.5]/SA multilayer 

films is anticipated to concentrate PPB on the cell surface, potentially generating locally 

toxic concentrations. Therefore, islet viability and function were assessed after 

fabrication of a (PPB/SA)8 multilayer film. Coating islets did not affect islet viability 

(Figure 2.8A) indicating that neither the polymers employed nor the coating process 

caused damage to islets. Of clinical significance, human islets could also be coated with 

a (PPB[2.5]/SA)8 multilayer film without compromising islet viability (Figure 2.8A); this 

was further confirmed using an MTS assay whereby the viability of coated and untreated 

islets was indistinguishable (p>>0.1). Additionally, the coating process did not result in 

islet loss. Islet function was assessed in vitro by measuring insulin secretion in response 

to a step change in glucose concentration. As shown in Figure 2.8B, islets coated with a 

(PPB[2.5]/SA)8 multilayer film function comparably to non-treated islets in response to 

glucose stimulation. Impaired in vitro insulin secretion has been observed for a variety of 

conventional microcapsule formulations [85, 104, 105] due to significant void space 

which glucose and insulin must cross prior to transport across the membrane. Due to the 

nanothin and conformal nature of PPB/SA coatings this behavior was not observed. 

While no attempts were made to fabricate more than eight bilayers, it is anticipated that 

considerably more layers may be formed without compromising islet viability given the 

lack of toxicity exerted by PPB[2.5].  
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Figure 2.8. Islet viability and function are preserved after formation of a (PPB[2.5]/SA)8 
multilayer film. (A) Viability (mean ± SD) was assessed after film formation via calcein 
AM and ethidium homodimer staining. Image analysis of confocal micrographs revealed 
no statistical difference (p>0.05) in islet viability between untreated (black bar) and 
coated islets (grey bar) for both mouse and human islets. (B) Untreated (black bar) and 
coated islets (grey bar) secrete statistically similar (p>0.05) amounts of insulin at both 
3.3 and 16.7 mM glucose, indicating that islet function is not influenced by film formation. 
Data points represent mean ± SE, for a minimum of seven independent measurements. 
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 Intraportal transplantation of conformally coated islets. Islets coated with a 

(PPB[2.5]/SA)8/PPB[2.5] multilayer film were transplanted into the portal vein of mice in a 

B10 to B6 allograft model; a final PPB layer was used to generate a terminal PEG layer 

to help prevent non-specific binding of serum proteins to the film [275, 284]. In this 

model of islet transplantation, a suboptimal number of islets (250) are infused into the 

portal vein of the liver, resulting in transient reversal of diabetes (euglycemic for >2 

consecutive days) in only a fraction of recipients during the initial 2 weeks post-

transplant [37, 45]. Therefore, differences in rates of conversion to euglycemia reflect 

changes in islet survival and function in the immediate post-transplant period.  Of the 16 

mice transplanted with untreated islets, 6 converted to euglycemia (37.5%), whereas 7 

of 15 mice (46.7%) converted when receiving islets coated with a multilayer film (Figure 

2.9). This difference was not statistically significant (χ2 = 0.11), indicating that islets 

coated with a (PPB/SA)8/PPB multilayer thin film maintain islet viability and function in 

vivo, and suggesting that the film itself does not invoke a deleterious non-specific 

inflammatory response. This is significant as intraportal transplantation of islets 

encapsulated in 350 µm microcapsules has been found to impair islet engraftment 

relative to non-encapsulated controls due, in part, to inflammatory responses elicited 

against the implant [131]. Moreover, the observed trend towards increased conversion to 

euglycemia suggests a potential beneficial impact of the film, an effect which may be 

rendered more pronounced by increasing film thickness, optimizing barrier permeability, 

or by incorporating bioactive film constituents, efforts which are currently ongoing.  

Significantly, this is the first study to report in vivo survival and function of 

nanoencapsulated cells or cell aggregates.  
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Figure 2.9. (PPB/SA)8/PPB coated islets perform comparably to untreated islets after 
intraportal islet transplantation. Two hundred and fifty (250) untreated (solid line) or 
(PPB/SA)8/PPB coated (dashed line) B10 mouse islets from were transplanted into the 
portal vein of diabetic B6 mice. Blood glucose levels were monitored daily for two weeks 
and conversion to euglycemia was defined as glucose levels < 200 mg/dl for > 2 
consecutive days. Islets coated with a (PPB/SA)8/PPB film resulted in an increased 
conversion to euglycemia (46.7%; 7/15) relative to untreated controls (37.5%; 6/16), 
however, this difference was not statistically significant  (χ2 = 0.11).  
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 Covalent conjugation of PEG to islet surface proteins and carbohydrates has 

recently been explored as a strategy for attenuating host responses to transplanted allo- 

and xenografts [162, 168].  However, the efficacy of PEGylation may be limited, in part, 

by the lack of a defined pore structure, with primary dependence on barrier function 

through a steric exclusion effect.  In principle, such limitations may be addressed 

through use of PPB/SA multilayer films, which are anticipated to generate PEG-rich 

networks rather than a monolayer of grafted PEG on the cell surface. Reports 

demonstrating in vivo efficacy of islet surface PEGylation have utilized different, in some 

cases less rigorous, animal models and/or adjunctive immunosuppressive therapy [13, 

165, 168]. Therefore, PPB/SA multilayer films may demonstrate increased efficacy in 

other animal models of islet transplantation or may act in synergy with systemic 

administration of immunomodulatory agents.  

 PPB/SA films may also provide important advantages over covalent biotinylation 

strategies employed to immobilize bioactive molecules to the islet surface [236, 285].  As 

a multilayered structure, PPB/SA films may allow biotinylated or streptavidin-linked 

molecules to be embedded within the film, thereby facilitating greater loading than might 

be accomplished using a single layer of immobilized biotin moieties. Moreover, 

multilayer films assembled via (strept)avidin/biotin interactions may be disintegrated 

using excess biotin [281, 282], thereby allowing triggered release of embedded agents.  

 

2.4. CONCLUSIONS 

 PPB/SA multilayer films provide a novel approach to generating nanothin, PEG-

rich conformal islet coatings through a self-assembly process. While further 

characterization and optimization of properties is necessary to generate films capable of 

significantly improving in vivo islet engraftment, this work helps establishes a new 

paradigm for encapsulating and/or modifying islets prior to portal vein transplantation. 
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Additionally, this work provides mechanistic insight regarding the relationships between 

polycation charge density, cell surface localization, and cytotoxicity, with important 

implications for the design of cell and tissue-surface supported nanostructures.  All told, 

PPB/SA multilayer films offer a unique approach to resurfacing the biochemical 

landscape of living cell and tissue interfaces with broad applications in tissue-targeted 

chemistry, biosensing, in situ tissue engineering, and targeted cell delivery.  
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CHAPTER 3 

Cell Surface-Supported Polyelectrolyte Multilayer Thin Films as Conformal 

Islet Coatings 

 

3.1 INTRODUCTION 

 Cell encapsulation provides a promising approach for attenuating deleterious 

inflammatory and immune responses that underlie the destruction of transplanted 

pancreatic islets [85, 87, 114, 222, 286]. However, despite considerable progress over 

the past several decades [109, 113] the efficacy of islet encapsulation remains limited, in 

part, by consequential mass transport limitations and large transplant volumes 

associated with use of conventional microencapsulation strategies [88, 89, 129-131, 

222].  In response to these challenges, recent effort has been given towards reducing 

the size and void volumes of capsules through use of polymeric coatings that conform to 

the surface of individual islets.  As such, coatings ranging in thickness from 5-50 µm 

have been created using emulsification [145], discontinuous gradient density 

centrifugation [141], selective withdrawal [146], and interfacial polymerization [148].  

While promising, incomplete encapsulation, islet loss, and limited process scalability 

remain significant obstacles in the clinical realization of such approaches.  On the other 

end of the spectrum, several investigators have sought to generate conformal barriers 

on the molecular scale through conjugation of poly(ethylene glycol) directly to the 

surface of islet surface proteins [13, 152-157]. As a hydrated, flexible polymer chain, 

PEG has been shown to present a steric barrier to a number of biochemical and cellular 

processes implicated in the destruction of islet grafts [158, 162-164].  However, as a 

consequence of the natural turnover of cell surface macromolecules, the stability of islet 

grafted PEG chains has recently come into question [287]. Moreover, as the success of 
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conventional encapsulation strategies is largely predicated upon preventing diffusion of 

antibodies and other macromolecules to their respective targets on the cell surface, the 

efficacy of cell surface-grafted PEG may be limited by lack of a defined pore structure 

and dependence on a steric exclusion effect. 

 Layer-by-layer (LbL) polymer assembly has recently emerged as a facile and 

versatile bottom-up approach to the design of thin films of tailored biophysiochemical 

properties [249-251, 288].  Though covalent bonding [289-291], biorecognition [278-280, 

292], and hydrogen bonding [250, 293, 294] have recently been explored as driving 

forces for LbL assembly, polyelectrolyte multilayer (PEM) films assembled through 

alternating deposition of oppositely charged polyelectrolytes [249] represent the most 

commonly utilized and versatile LbL film architecture.  Through appropriate control of 

film constituents, layer number, and solvent conditions, PEM films ranging in thickness 

from several nanometers to several microns [295] may be assembled on geometrically 

and chemically diverse substrates [253, 254, 288, 296, 297].  Significantly, PEM films 

have been used to generate barriers to molecular recognition between complementary 

molecules [252] and inhibit interactions between immobilized ligands and cell surface 

receptors [253, 254].  Of particular relevance to the design of conformal coatings, PEM 

films, most notably those comprised of poly(L-lysine) and alginate, have been commonly 

used to confer appropriate permselectivity to conventional microcapsulation devices 

[109, 186, 192].  Hence, LbL assembly of polyelectrolyte multilayer films directly on the 

negatively charged islet surface offers a rational approach for generating conformal 

coatings of tailored thickness and permeability.   

 Unlike conventional substrates, which are largely passive bystanders of film 

growth, the cell surface presents a complex and dynamic interface capable of chemically 

and physically restructuring in response to film constituents.  As such, the well 

documented toxicity elicited by most synthetic and natural polycations in direct contact 
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with the cell surface [267-269, 298-303] poses a significant molecular hurdle in the 

development  of cell surface-supported PEM films.  Notwithstanding such accounts, 

Germain et al. have recently reported ~75% survival of adherent MELN cells upon 

fabrication of nine bilayers using poly(diallyldimethyl ammonium chloride) (PDDA) and 

poly(styrene sulfonate) [304] while Veerabadran et al. have reported encapsulation of 

mesenchymal stem cells with three bilayers comprised of poly(L-lysine) (PLL) and 

hyaluronic acid [305]. However, we have recently demonstrated significant decreases in 

islet viability upon short-term exposure to several commonly employed polycations, 

including PDDA and PLL [303].  While conformal islet coatings generated using LbL 

films assembled through covalent bonding [306] or receptor-ligand interactions [303, 

307] may provide alternative, polycation-free architectures, they lack the unparalleled 

versatility and flexibility afforded by PEM films.  

 We have recently reported that conjugation of biotin-derivatized poly(ethylene 

glycol) (3.4kD) to ~40% of backbone lysine residues abrogates the cytotoxicity of poly(L-

lysine) towards pancreatic islets, and that the resultant polycationic poly(L-lysine)-graft-

PEG copolymer adsorbed to accessible extracellular surfaces within pancreatic islets 

[303] (Chapter 2). Based on such findings, we have postulated that structurally similar 

PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and 

propagate the assembly of PEM films on pancreatic islets, while simultaneously 

preserving islet viability.  We describe herein cell surface-supported polyelectrolyte 

multilayer films with tunable properties assembled on individual pancreatic islets through 

layer-by-layer deposition of alginate and PLL-g-PEG copolymers rendered 

cytocompatible through appropriate control of PEG length and grafting ratio. Additionally, 

these investigations begin to establish a conceptual framework for the rational design of 

cell surface-supported thin films, with the objective of translating the diverse biomedical 

and biotechnological applications of PEM films to cellular interfaces.   
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3.2.  MATERIALS AND METHODS 

 Poly(L-lysine)M-g[x]-poly(ethylene glycol)n copolymer synthesis and 

characterization. Poly(L-lysine)M-g[x]-poly(ethylene glycol)n copolymers (M=PLL-HBr 

molecular weight, x=grafting ratio, n=number of PEG repeat units) were synthesized via 

active ester coupling between N-hydroxysuccinimidyl (NHS)-ester-functionalized methyl-

PEGn (mPEGn) and primary amines of the PLL backbone. mPEG4-NHS was purchased 

from Pierce Biotechnology (Rockford, IL) and used as received. mPEG12 and mPEG24 

were purchased from Quanta Biodesign (Powell, Ohio) and vacuum dried overnight 

before use to remove trace amounts of residual organic solvent. Poly(L-

lysine)hydrobromide (Sigma Aldrich, St. Louis, MO; Mw=12, 45, or 98 kD by MALLS) was 

dissolved at 5 mg/ml in dilute phosphate buffered saline (7.7 mM NaCl, 0.28 mM 

Na2HPO4, pH=7.4) for 30 minutes at room temperature. mPEGn-NHS (n=4, 12, or 24) 

was dissolved at 250 mM in dry DMSO (Pierce Biotechnology) and slowly added to PLL 

under vigorous stirring.  After 120 minutes, 10x Dubelco’s phosphate buffered saline 

(DPBS, Mediatech, Inc., Manassas, VA) was added to the reaction mixture 1:10 by 

volume; this was repeated at 150 and 180 minutes, after which the reaction was allowed 

to proceed for an additional 21 hours. This coupling protocol was empirically determined 

to yield more efficient grafting of mPEGn to PLL than simple mixing of constituents in 

PBS as generally performed. The product was transferred to dialysis cassettes (Slide-A-

Lyzer Dialysis Cassette, 3.5 kD MWCO, Pierce Biotechnology) and dialyzed first against 

DPBS (pH 7.0, 3 x 24 hours, Mediatech, Inc.) and subsequently against distilled 

deionized water (3 x 24 hours). The product was then lyophilized until completely dry 

and stored at -20°C prior to use.   

 mPEGn-NHS was added to PLL at various stoichiometric ratios to generate a 

library of PLLM-g[x]-PEGn copolymers with a range of grafting ratios, x, where x is 

average number of modified and unmodified lysine residues per grafted side chain. 
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Grafting ratio of PLLM-g[x]-PEGn polymers was determined using 1H NMR (INOVA 600) 

by taking the ratio of chemical shifts assigned to mPEG linked to lysine (3.15 ppm, m, -

CH2NHC(O)OCH2-) and ungrafted lysine chains (2.95 ppm, m, -CH2NH3
+). Table 3.1 

summarizes the structural properties of PLLM-g[x]-PEGn copolymers used in these 

investigations, including copolymer molecular weight which can be estimated based on 

the grafting ratio and the molecular weight of PLL and grafted PEG chains [308] and was 

used as the basis for determining the molar concentration of polymers. 

 Acetylated poly(L-lysine) synthesis and characterization. Random 

copolymers consisting of lysine and acetylated lysine monomers (PLL-Acetate, P12Ac), 

were synthesized in analogous manner to PLLM-g[x]-PEGn compounds using 

sulfosuccinimidyl acetate (sNHS-acetate, Pierce Biotechnology, Rockford, IL). sNHS-

acetate was added to PLL-HBr (12 kD) at various stoichiometric ratios to generate 

copolymers with different degrees of lysine acetylation. The product was transferred to 

dialysis cassettes (Slide-A-Lyzer Dialysis Cassette, 3.5 kD MWCO, Pierce 

Biotechnology, Rockford, IL) and dialyzed first against DPBS (pH 7.0, 3 x 24 hours, 

Mediatech, Inc., Manassas, VA), and subsequently against distilled deionized water (3 x 

24 hours). The product was then lyophilized until completely dry and stored at -20°C 

prior to use.  The degree of acetylation was determined by 1H NMR (INOVA 600) by 

taking the ratio of chemical shifts assigned to acetylated lysine (3.05 ppm, m, -

CH2NHCOCH3) and unmodified lysine chains (2.95 ppm, m, -CH2NH3
+). Relevant 

structural properties of PLL-Acetate are summarized in Table 3.1.  
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Table 3.1. Structure of copolymers employed in this work 

Polymer ID PLL MWa 
(kD) 

PEGn 
(n) 

Grafting Ratioe 
(x) 

% Lysine 
Modifiedf 

Estimated 
MWg  (Da) 

P12P4[6.7] 12b 4 6.7 15 9,320 

P12P4[4] 12b 4 4 25 10,700 

P12P4[2.9] 12b 4 2.9 35 11,960 

P12P4[2.5] 12b 4 2.5 40 12,850 

P12P12[5] 12b 12 5 20 14,020 

P12P12[4] 12b 12 4 25 15,660 

P12P12[3.3] 12b 12 3.3 30 17,310 

P12P12[2.9] 12b 12 2.9 35 18,960 

P12P12[2.5] 12b 12 2.5 40 20,600 

P12P24[10] 12b 24 10 10 15,040 

P12P24[5] 12b 24 5 20 18,840 

P12P24[2.5] 12b 24 4 25 23,280 

P12P24[3.3] 12b 24 3.3 30 26,450 

P12Ac[2.5] 12b 0 2.5 40 8,420 

P45P4[2.5] 45c 4 2.5 40 48,810 

P45P4[2.0] 45c 4 2 50 51,160 

P45P4[1.7] 45c 4 1.7 60 55,850 

P100P4[2.5] 100d 4 2.5 40 106,130 

a: Molecular weight of PLL-HBr starting material, includes contribution of Br- counterion. 
b: 12 kD MW by MALLS, 1.2 Mw/Mm. c: 45 kD MW by MALLS. d: 98.8 kD MW by 
MALLS. e: Rounded to nearest tenth. f: Rounded to nearest multiple of 5. g: 
MWcopolymer=MWPLL+(MWPLL/MWLys)(x-1)(MWPEG), excludes contribution from Br-, no 
approximations in grafting ratio were used for calculation.  
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 Fluorescent labeling of polymers. To facilitate identification of PLLM-g[x]-PEGn 

copolymers and PLL-acetate on islets with confocal microscopy, and to allow layer-by-

layer film growth on planar substrates to be monitored with UV-vis spectroscopy, a 

portion of selected copolymers was labeled with Alexa Fluor ® 488 carboxylic acid, 

2,3,5,6-tetrafluorophenyl ester (AF488-TFP ester; Molecular Probes, Eugene, OR) 

according to manufacturer’s instructions. AF488-TFP was added at appropriate 

stoichiometric ratios to ensure labeling of less than 1% of backbone lysine monomers. 

Non-reacted dye was removed via dialysis (Slide-A-Lyzer Dialysis Cassette, 3.5 kD 

MWCO, Pierce Biotechnology, Rockford, IL), and the labeled product was lyophilized 

until completely dry. The degree of labeling was quantified using UV-vis spectroscopy 

(Cary 50; Varian Inc., Palo Alto, CA) and determined to be between 0.64% and 0.89%. 

To facilitate identification of PLL, FITC-labeled poly(L-lysine) (Sigma Aldrich, St. Louis, 

MO) was used.  

  To facilitate identification of alginate on islets with confocal microscopy, alginate 

(UP LVM, MW 75 kD, NovaMatrix, Sandvika, Norway) was labeled with fluorescein 

through sequential oxidation of uronate residues and reaction with fluorescein-5-

thiosemicarbazide. Alginate oxidation was performed as previously described [309]. 

Alginate was dissolved at 10 mg/ml in molecular grade water and 0.25 M sodium 

metaperiodate (NaIO4, Sigma Aldrich) in water was added at 0.01 equivalents with 

respect to uronate repeat units. After 24 hours, the reaction was quenched with 10 

equivalents excess ethylene glycol (Sigma Aldrich), and the product dialyzed (Slide-A-

Lyzer Dialysis Cassette, 3.5 kD MWCO, Pierce Biotechnology) 3 x 24 hours against 

distilled deionized water and lyophilized until completely dry. The extent of alginate 

oxidation was quantified as previously described [309]. Ten-fold excess of tert-butyl 

carbazate (Sigma Aldrich) was reacted with oxidized alginate for 24 hours. The amount 

of unreacted tert-butyl carbazate was determined by the addition of 
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trinitrobenzenesulfonic acid (TNBS) solution (Sigma Aldrich) and measuring the 

absorbance of the colored complex formed at 334 nm. The degree of oxidation was 

determined to be ~0.5%. Fluorescent labeling was achieved through thiosemicarbazone 

bond formation between fluorescein-5-thiosemicarbazide (Sigma Aldrich) and aldehyde 

groups of oxidized alginate. Three equivalents excess of fluorescein-5-

thiosemicarbazide was added to oxidized alginate dissolved in phosphate buffered 

saline (Mediatech, Inc., Manassas, VA) at 5 mg/ml. After reaction for 24 hours, non-

reacted dye was removed via gel filtration (PD-10, GE Healthcare, Piscataway, NJ). The 

fluorescent conjugate was lyophilized and stored protected from light at -20°C. Degree of 

fluorescent labeling was quantified by UV-vis spectroscopy, and confirmed to be less 

than 1%.  

 Islet isolation.  Pancreatic islet isolations were performed as previously 

described [264]. B10.BR-H2k H2-T18a/SgSnJ (B10) mice (8 weeks old, Jackson 

Laboratory Bar Harbor, ME) pancreata were removed after distension with collagenase 

P (1 mg/ml, Roche, Indianapolis, IN) through the common bile duct. Following digestion, 

islets were purified by a Ficoll-Histopaque discontinuous gradient (Ficoll: 1.108, 1.096, 

and 1.037; Mediatech Inc., Manassas, VA).  Isolated islets were cultured for 48-72 hours 

at 37°C in RPMI 1640 supplemented with 10% heat inactivated fetal calf serum, L-

glutamine (2mM), and penicillin (100U/ml), streptomycin (100 µg/ml) and amphotericin B 

(0.25 µg/ml) (Mediatech Inc.), and media was changed daily.  

 Islet coating. Islets (<1000) were placed into 12 mm cell culture inserts with 12 

µm pores (Millicell-PCF; Millipore, Billercia, MA). Prior to introduction of polymer solution, 

islets were washed six times by adding 700 µl serum free RPMI 1640 to the insert, 

followed by gentle repeated tapping of the insert on a polystyrene surface to facilitate 
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drainage of the wash solution through pores while retaining islets. The insert was placed 

into a well of a 24 well plate (Corning Inc., Corning, NY) and 700 µl of coating solution 

was added to the cell culture insert.  After incubation in coating solution, the insert was 

removed from the well, solution drained through the insert as described above, and islets 

washed four times as described above to ensure adequate removal of polymer solution. 

To fabricate layer-by-layer thin films, the process of polymer incubation and washing 

was repeated using appropriate polymer solutions and incubation times. For assembly of 

PLLM-g[x]-PEGn/alginate multilayer films, islets were incubated in PLLM-g[x]-PEGn for 5 

minutes, washed four times with RPMI 1640, incubated in alginate for 5 minutes, and 

washed again to form a single bilayer. This process was repeated to assemble the 

desired number of bilayers. 

Confocal microscopy. Confocal microscopy (Zeiss LSM 510 META; Carl Zeiss, 

Inc., Thornwood, NY) was used to identify fluorescently labeled film components on 

islets. A representative population of islets selected at random was placed in silicon 

isolators (Grace Bio-Labs, Bend, OR) adhered to glass coverslips (Fisher Scientific) 

containing serum free RPMI 1640. Coverslips were then placed on the microscope stage 

and images were captured within 15-90 minutes of polymer incubation or film deposition. 

In some instances, islets were incubated with 8 µM Hoechst 33342 (Molecular Probes, 

Eugene, OR) for 60-90 minutes before or after film assembly to allow individual cell 

nuclei within islets to be clearly identified. All experiments performed using Hoechst 

staining were repeated and results confirmed in the absence of staining to ensure 

Hoechst did not confound findings.   

Assessment of islet viability. Islet viability was assessed as previously 

described [148] with some modifications. Briefly, islets were incubated in DPBS 

(Mediatech Inc., Manassas, VA) containing 4 µM calcein AM and 8 µM ethidium 
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homodimer-1 (Molecular Probes, Eugene, OR) for one hour, and a representative 

number of individual islets (35-50) were imaged with two-channel confocal microscopy 

using a 20x objective as described above. Confocal micrographs were analyzed using 

MATLAB® (The MathWorks, Natick, MA) to quantify the number of pixels corresponding 

to fluorescent emission from live (green) and dead (red) cells.  Viability is expressed as 

the percentage of fluorescent pixels associated with emission from live cells.  

 Film assembly and characterization on planar substrates. Quartz slides (0.5 

x 1 in.; Chemglass, Vineland, NJ) and silicon wafers (N/As(111) 500 µm SSP Prime with 

30 nm thermal oxide, University Wafer, South Boston, MA) were used as substrates for 

characterizing film growth and properties by solid-state UV-vis spectroscopy and 

ellipsometry, respectively. Silicon wafers were diced into ~0.5 x 1.25” substrates prior to 

cleaning. Substrates were cleaned by immersion in H2O/H2O2/NH4OH (5:1:1) for 15 

minutes at 80°C, thoroughly rinsed with WFI quality water, and subsequently incubated 

with HCl/H2O2/H2O (1:1:5) at 80°C for 15 minutes. After cleaning, substrates were rinsed 

with WFI quality water followed by ethanol, dried under a gentle stream of argon, and 

stored in a vacuum desiccator prior to use. To minimize risk of contamination, all 

substrates were used 24-48 hours after cleaning. 

 Substrates were coated using a custom-built automated slide coater assembled 

using two BiSlide® assemblies and stepper motors purchased from Velmex, Inc. 

(Bloomfield, NY). Briefly, the coater is composed of two linear, screw driven actuators 

combined to allow translation of substrates in both horizontal and vertical directions. 

Vertically mounted substrates are immersed in and removed from polymer and wash 

solutions at 1.3 cm/s using the vertical actuator, and moved between different polymer 

and wash solutions at 5.1 cm/s with the horizontal actuator. The device is computer 

controlled by COSMOS software (Velmex, Inc.).   
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 Prior to PLLM-g[x]-PEGn/alginate multilayer film assembly, substrates were 

incubated with 1% (w/v in water) poly(diallyldimethylammonium chloride) (PDDA) (MW 

100-200 kD, Sigma-Aldrich, St. Louis, MO) for 30 minutes, rinsed four times for 30 

seconds each by immersion in 500 ml of WFI quality water, followed by incubation in 1.5 

mg/ml sodium alginate (UP LVM; NovaMatrix, Sandvika, Norway) in phosphate buffered 

saline for 20 minutes, and another 4x 30 second rinse with water to generate a 

negatively charged, carbohydrate-rich surface from which to initiate film growth. PLLM-

g[x]-PEGn copolymers were dissolved at desired concentration in HEPES buffered (25 

mM, pH 7.4) RPMI 1640 supplemented with L-glutamine (2 mM), penicillin (100 U/ml), 

and streptomycin (100 ug/ml) (HRPMI). Alginate (UP LVM; NovaMatrix, Sandvika, 

Norway, MW~75kD) was dissolved at 2 mg/ml in HRPMI. To assemble a PLLM-g[x]-

PEGn/alginate bilayer, substrates were immersed in PLLM-g[x]-PEGn copolymer for 5 

minutes, rinsed 4 x 20 seconds by immersion in 500 ml HRPMI, incubated with alginate 

for 5 minutes, and again rinsed four times HRPMI. This process was repeated until the 

desired number of bilayers was assembled.   

 LbL growth on quartz substrates was followed using solid-state UV-vis 

spectroscopy to monitor the absorbance at 495 nm of AF488-labeled PLLM-g[x]-PEGn 

copolymers as function of layer number. Absorption spectra (200-800 nm) were 

recorded in WFI quality water using a UV-vis spectrophotometer (Cary 50; Varian Inc., 

Palo Alto, CA) beginning with the second PLLM-g[x]-PEGn deposition and every other 

deposition thereafter through twelve bilayers. To compare absorbance values between 

polymers with different degrees of AF-488 labeling, absorbance at 495 nm was 

normalized by the percentage of backbone monomers modified with fluorescent label.  

 Spectroscopic ellipsometry (Woollam M-2000, J.A. Woollam Co, Inc., Lincoln, 

NE) was used to measure thickness of films assembled on silicon substrates. After 

assembly of the desired number of bilayers, samples were rinsed by immersion in WFI 
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quality water and carefully dried under a gentle stream of filtered argon gas. Films were 

stored in a vacuum desiccator prior to measurement, and measurements were taken 24-

72 hours after film assembly. Measurements were performed between 370 nm and 1000 

nm at an angle of incidence of 70°. Thickness measurements were performed on a 

minimum of three samples per film type, and thickness was measured at 2-4 spots per 

sample to account for possible non-uniformities in film thickness.   

 For data interpretation, the ellipsometric angles, Ψ and ∆, were fit using a 

multilayer model composed of silicon, silicon oxide, the PDDA/alginate precursor layer, 

and the PEM film of interest to obtain the thickness of films. The thickness of SiO2 layers 

was determined using well-established optical constants.  A unique oxide layer thickness 

was determined for each wafer from an average of three samples, and was used for 

determining the thickness of films assembled on substrates diced from a particular 

wafer.  The average oxide layer thickness for all wafers used in these investigations was 

determined to be 28.5 ± 1.2 nm. The thickness of the PDDA/alginate precursor layer was 

determined by fitting data with the Cauchy approximation with An=1.5, Bn= 0.01, and 

Cn=0.0, and determined to be 1.08 ± 0.72 nm. When films are sufficiently thick, their 

refractive index can be explicitly determined from Ψ and ∆ trajectories. The Cauchy 

coefficients An and Bn were uniquely determined for PEM films generated with different 

polycations using data obtained from films consisting of eight bilayers, the thickest films 

generated for each polyion pair. For films assembled using P12P4[2.5] and P45P4[1.7] 

as polycations, An=1.535, Bn=0.00509, for films assembled using P12P12[3.3], 

An=1.527, Bn=0.00469, and for films assembled using P12P24[4], An=1.5124, 

Bn=0.00349. To measure the thickness of PEM films, the thickness of the oxide and 

precursor layers were defined, and data fitted with the Cauchy approximation with An 

and Bn fixed at values determined as described above. Reported thickness 
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measurements do not include contributions from SiO2 or precursor layers, and, 

therefore, reflect only the thickness of the assembled film.  

 Statistics. Tests for statistical significance between the means of two groups 

were conducted with the Student’s t-test (two-tailed, homoscedastic). Tests between 

three or more groups were conducted with the one-way ANOVA followed by the Tukey 

HSD test.  

 

 
3.3.  RESULTS 

 Grafting of methyl-PEG4 to poly(L-lysine) attenuates cytotoxicity in a 

grafting ratio-dependent manner. Methyl-tetra(ethylene glycol) (mPEG4) was grafted to 

primary amino groups of poly(L-lysine)hydrobromide (12kD) via NHS ester coupling to 

generate graft copolymers (PLL12kD-g[x]-PEG4(CH3); P12P4[x]) with grafting ratios, x, of 

6.7, 4.0, 2.9, and 2.5 (P12P4[6.7], P12P4[4.0], P12P4[2.9], P12P4[2.5], respectively). To 

investigate the effect of PEG4 grafting on polycation toxicity, islets were incubated in PLL 

and P12P4[x] copolymers at ~80 µM  (~4.5 mM modified and unmodified lysine 

residues) for 40 minutes, and islet viability was assessed via calcein AM and ethidium 

homodimer staining (Figure 3.1A) and subsequent quantification with image analysis 

(Figure 3.1B). P12P4[x] copolymers were synthesized from a common PLL backbone 

and polymer concentration was maintained at ~80 µM, and, therefore, differences in islet 

viability can be attributed to the effect of grafted PEG chains. Each polycation tested had 

significantly different (p<0.01) effects on islet viability relative to all other polycations, 

with the exception that no statistical difference between P12P4[2.9] and P12P4[2.5] was 

observed (p>0.05). Hence, PLL cytotoxicity towards pancreatic islets is significantly 

attenuated through grafting of PEG4 side chains, and P12P4[x] cytotoxicity decreases as 

grafting ratio is reduced. However, only the viability of islets incubated with P12P4[2.5] 
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was found to be statistically indistinguishable from untreated controls (p>0.05 vs. 

untreated control group). It should be noted that small, but statistically significant, 

decreases in islet viability associated with some polycations (e.g., 95.6±1.5% 

(P12P4[2.9]) vs. 99.2±0.9% (untreated control), p<0.01), are largely due to death of cells 

only on the islet periphery (Figure 3.1A). While peripheral cell death may not 

dramatically influence overall islet viability or function, it is associated with changes in 

islet morphology (Figure 3.1A), intercellular internalization of film constituents (Figure 

3.3), and eventual shedding/release of dead cells from the islet, all of which are likely to 

compromise the assembly, properties, and efficacy of cell surface-supported thin films. 

For this reason, the critical grafting ratio, xc, for a PLLM-g[x]-PEGn copolymer is defined 

as the grafting ratio whereby no statistical difference (p>0.05) in islet viability relative to 

untreated controls is achieved under a given set of conditions (e.g., solvent, 

concentration, incubation time). Hence, the critical grafting ratio for P12P4[x] was found 

to be 2.5.  

 Decreasing grafting ratio reduces polycation charge density, and, consequently, 

at equimolar polymer concentrations, the total concentration of amino groups in solution 

that may interact with the cell membrane as well. To determine if the observed 

relationship between cytotoxicity and grafting ratio was simply a consequence of 

reduced solution amino group concentration, the viability of islets incubated with 

P12P4[2.5] and P12P4[4] at equimolar concentration of free amino groups (2.6 mM) was 

compared. The viability of islets incubated with P12P4[4] was found to be significantly 

less than those incubated with P12P4[2.5] (72.2±19.7% vs. 97.0±2.4%, p<0.01) 

indicating that the observed reduction in toxicity with increasing PEG4 grafting is not 

merely a result of reduced primary amine concentration in solution, but rather a 

consequence of polymer structure. 
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Figure 3.1. Grafting of mPEG4 to poly(L-lysine) reduces cytotoxicity in a grafting ratio-
dependent manner. (A) Representative confocal and bright field micrographs of islets 
stained with calcein AM (green, viable) and ethidum homodimer (red, non-viable) after 
incubation with PLL and PLL12kD-g[x]-PEG4 copolymers of different grafting ratio.  Note 
that polycation-mediated peripheral cell death is associated with changes in islet 
morphology (scale bar = 50 µm). (B) Quantification of islet viability (relative to untreated 
control groups) by image analysis (mean ± SD) after incubation (40 m, 80 µM) with PLL 
and PLL12kD-g[x]-PEG4 copolymers of different grafting ratio. Unless otherwise indicated, 
groups are significantly different (p<0.01) from all other groups. Bars with the same letter 
label are not statistically different from each other (p>0.05). Bars labeled with the letter b 
are not statistically different from untreated controls (>0.05).  
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 Effect of PLL molecular weight on PLLM-g[x]-PEG4 copolymer toxicity. 

Polycation molecular weight plays an important role in the growth characteristics and 

properties of polyelectrolyte multilayer thin films [310]. However, the cytotoxicity of most 

polycations, including PLL, tends to increase with increasing molecular weight [269]. To 

explore the effect of PLL molecular weight, PLLM-g[x]-PEG4 copolymers with grafting 

ratios of ~2.5 and PLL backbone molecular weights, M, of 45 kD and 98.8 kD 

(P45P4[2.5] and P100P4[2.5], respectively) were synthesized. Viability was initially 

assessed at 1 mg/ml (40 min incubation), corresponding to ~20.5 µM and 9.5 µM, 

respectively. Even at such reduced molar concentrations, both P45P4[2.5] and 

P100P4[2.5] exerted significantly more toxicity (p<0.01) (Figure 3.2A) than their lower 

molecular weight counterpart, P12P4[2.5], indicating that PLL molecular weight plays an 

important role in the toxicity of PLLM-g[x]-PEG4 copolymers and, potentially, that xc may 

be unique for a given PLL backbone. To address this possibility, P45P4[x] copolymers 

with x = 2 and 1.7 were synthesized and their effect on islet viability assessed at ~20.5 

µM. Again, a grafting ratio dependence on islet viability was observed (Figure 3.2B), but 

the critical grafting ratio for PEG4 decreased to 1.7. Comparison of P45P4[1.7] and 

P12P4[2.5] at equimolar concentration of free amino groups (2.6 mM NH2) revealed no 

significant difference in islet viability between groups or between each group and 

corresponding untreated controls (p>0.05).  
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Figure 3.2. PLL molecular weight influences the toxicity of PLLM-g[x]-PEG4 copolymers. 
(A) At a grafting ratio of 2.5, increasing the molecular weight of the PLL backbone from 
12 kD to 45 kD or 100 kD significantly reduces islet viability (mean ± SD, p<0.01). (B) 
Cytoxicity of PLL45kD-g[x]-PEG4 copolymers is reduced with decreasing grafting ratio, 
with a grafting ratio of 1.7 necessary to yield viability statistically indistinguishable from 
untreated controls. Unless otherwise indicated, groups on the same plot are significantly 
different (p<0.1) from all other groups. Bars with the same letter label are not statistically 
different from each other (p>0.05). Bars labeled with the letter b are not statistically 
different from untreated control groups (p>0.05). 
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 Effect of PEG grafting and PEG chain length on PLLM-g[x]-PEGn copolymer 

cytotoxicity. To investigate the relative contributions of grafting ratio (and, 

consequently, reduced polycation charge density) and grafted PEG chains, ~40% of PLL 

(12kD) backbone lysine monomers were acetylated using sulfosuccinimidyl acetate, 

yielding a random copolymer consisting of lysine and acetylated lysine (P12Ac[2.5]), an 

analogous compound to P12P4[2.5] without a PEG4 spacer between the amide linkage 

and methyl head group. Islets were incubated in P12Ac[2.5] at ~80 µM for 40 minutes 

and islet viability assessed (Figure 3.3A). Attendant reduction of polycation charge 

density associated with 40% acetylation of lysine groups significantly (p<0.01) reduced 

polycation toxicity relative to non-modified poly(L-lysine), further supporting the 

importance of grafting ratio in polycation toxicity. However, unlike its PEGylated 

counterpart, P12P4[2.5], P12Ac[2.5] exerted significant toxicity towards islets (p<0.01), 

indicating that abrogation of toxicity associated with P12P4[2.5] is dependent not only on 

grafting ratio but also on the presence of grafted PEG chains.   

 The dependence of PLL12-g[x]-PEG4 toxicity on both grafting ratio and PEG 

suggests a possible synergism between the two whereby grafting ratio might be 

increased by grafting of longer PEG chains. To explore this possibility, methyl-PEG 

chains consisting of 12 and 24 repeat units (PEG12, PEG24) were grafted to PLL (12kD) 

at several different grafting ratios; a PLL backbone with identical properties to those 

used in the synthesis of P12P4[x] and P12Ac[2.5] copolymers was used to allow the 

effect of PEG chain length to be explicitly investigated. P12P12[x] copolymers with x=5, 

4, 3.3, 2.9, and 2.5 were generated, and viability assessed under identical conditions to 

P12P4[x] copolymers (80 µM for 40 min). As shown in Figure 3.3B, grafting ratio 

dependence is still observed, with x=5.0 and x=4.0 statistically different from untreated 

controls, each other, and all other groups (p<0.01). No statistical difference was 
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observed between x=3.3 and untreated controls or x=2.9 or 2.5 (data not shown), 

indicating that xc for PEG12 grafted to PLL12kD is reduced to 3.3. Accordingly, comparison 

of islet viability at x=4 for PEG4 and PEG12 (Figure 3.3D) reveals a significant difference 

between groups (p<0.01), indicating that, at a given grafting ratio, increasing PEG chain 

length reduces polycation toxicity. Grafting of PEG24 chains to PLL with grafting ratios of 

10, 5, and 4 (P12P12[10], P12P12[5], P12P12[4]) yielded similar trends (Figure 3.3C). 

Again, grafting ratio dependence is observed, as both x=10 and x=5 are statistically 

different from both untreated control groups and each other (p<0.01), whereas islet 

viability is maintained when x=4, indicating that the critical grafting ratio for PEG24 

grafted to PLL12 is ~4. Comparison of islet viability at x=5 for PEG12 and PEG24 (Figure 

3.3D) reveals a significant increase in viability associated with PEG24 grafts, further 

supporting the role of PEG chain length in attenuation of toxicity. Collectively, these 

findings indicate that grafting ratio and PEG length act together to reduce PLL12-g[x]-

PEGn cytotoxicity, and that increasing the length of grafted PEG can, to some extent, 

compensate for increased polycation charge density associated with an increased 

grafting ratio. 
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Figure 3.3. Increasing PEG chain length reduces PLL12kD-g[x]-PEGn copolymer toxicity. 
(A) Viability of islets (mean ± SD) incubated with copolymers in which 40% of lysine 
monomers were acetylated (P12Ac[2.5]) or conjugated to mPEG4 (P12P4[2.5]). A 
significant decrease (p<0.01) in islet viability occurs upon incubation with P12Ac[2.5] 
relative to P12P4[2.5] and untreated controls, indicating a dependence on grafted PEG 
chains in PLL12kD-g[x]-PEGn cytotoxicity.  Conjugation of PEG12 (B) and PEG24 (C) chains 
to PLL attenuates cytotoxicity in a grafting ratio-dependent manner, with grafting ratios of 
3.3 and 2.5, respectively, yielding islet viabilities statistically indistinguishable from 
untreated controls (p>0.05). (D) For a given grafting ratio (x=4 and x=5), increasing PEG 
chain length decreases PLL12kD-g[x]-PEGn toxicity. Unless otherwise indicated groups on 
the same plot are significantly different (p<0.01) from all other groups. Bars labeled with 
the letter b are not statistically different from untreated control groups (>0.05). 
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 PLLM-g[xc]-PEGn copolymers adsorb to extracellular surfaces of islets. 

Many polycations, including PLL, have been shown to induce pore formation in the 

plasma membrane, a phenomenon which often mediates cell death and enables 

transport of molecules, including the polycation itself, across the cell membrane [267-

269]. Indeed, incubation of islets with FITC-labeled PLL (~80 µM for 40 minutes) 

resulted in transport of PLL across the cell membrane and into the cytoplasm of 

individual cells, as indicated by colocalization with cell nuclei (Figure 3.4A,B). Similarly, 

P12Ac[2.5] labeled with AlexaFluor 488 (P12Ac[2.5]-AF, 80 µM,  40 min) was 

predominantly localized intercellularly (Figure 3.4C,D), despite a dramatic reduction in 

the polycation charge density. Conversely, confocal microscopy of islets during 

incubation (35-45 m) with AF488-labeled PLLM-g[x]-PEGn copolymers at the critical 

grafting ratio (i.e., P12P4[2.5], P12P12[3.3], P12P24[2.5] (80 µM), P45P4[1.7] (30 µM)), 

indicates that fluorescent emission remains localized almost exclusively extracellularly, 

indicating that cell membrane integrity is maintained upon exposure to polymers and that 

cells did not actively endocytose polymers to an appreciable extent over the course of 

the incubation (Figure 3.5A-C). Upon rinsing away labeled PLLM-g[xc]-PEGn, fluorescent 

emission was observed in a pattern consistent with the architecture of isolated 

pancreatic islets (Figure 3.5D-F), indicating that PLLM-g[xc]-PEGn adsorbed to accessible 

extracellular cell and/or matrix surfaces. The extracellular localization of PLLM-g[xc]-

PEGn copolymers relative to PLL or P12Ac[2.5] suggests that conjugation of PEG chains 

to the PLL backbone inhibits or dramatically reduces the capacity PLL to cross the cell 

membrane, most likely through inhibition of membrane pore formation, consistent with 

the observed reduction in toxicity. Significantly, PLLM-g[xc]-PEGn copolymers adsorb to 

all accessible extracellular surfaces, reflecting the truly conformal nature of such 
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coatings, and demonstrating the potential to use such polymers to modify or coat 

individual cells within a multicellular tissue such as islets.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Poly(L-lysine) and P12Ac[2.5] localize intercellularly. Confocal micrographs 
of islets incubated with FITC-labeled PLL (A,B) and AF488-labeled P12Ac[2.5] (C,D) 
demonstrate fluorescence throughout the cytoplasm of individual cells within islets often 
colocalized with cell nuclei (blue) identified via Hoechst staining (scale bar: A,C = 50 µm; 
B,D = 10 µm).  
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Figure 3.5. PLLM-g[x]-PEGn copolymers at the critical grafting ratio, xc, remain 
extracellular and adsorb to extracellular islet surfaces. (A-C) Confocal micrographs of 
islets during incubation with AF488-labeled PLLM-g[xc]-PEGn copolymers.  After 40 
minutes, polymer was observed almost exclusively extracellularly, indicating 
maintenance of cell membrane integrity and minimal polymer endocytosis. Polymers 
were able to diffuse into the core of islets through interstitial space and/or capillary 
networks (C). Upon rinsing, polymers were found to adsorb to the extracellular surface of 
cells and/or matrix (D-F). Copolymer adsorption was observed both on the islet 
periphery (D,E) as well as between individual cells within the core of the islet (E,F). Cell 
nuclei were identified via Hoechst staining (scale bar: A,C,D = 50 µm; B,E,F = 10 µm).  
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 PLLM-g[xc]-PEGn copolymers facilitate growth of polyelectrolyte multilayer 

films on surface of viable pancreatic islets. As a consequence of their positive charge 

and cell surface localization, PLLM-g[x]-PEGn copolymers at or below the critical grafting 

ratio provide an anchor for initiating growth of polyelectrolyte multilayer (PEM) thin films 

on the surface of pancreatic islets (Scheme 3.1).  PEM film growth, however, is highly 

dependent on polycation charge density [311-318], and, therefore, the reduction of 

charge density associated with generation of PLLM-g[xc]-PEGn copolymers may preclude 

film growth. Moreover, surface immobilized PEG, particularly longer chains, may 

generate steric barriers to electrostatic interaction between positively charged lysine 

residues on the PLL backbone and alginate, the polyanion.  To demonstrate PEM film 

growth on islets, films were assembled using PLLM-g[x]-PEGn at xc (highest charge 

density) and fluorescein-labeled alginate (F-Alg). Confocal microscopy was used to 

detect F-Alg on the islet surface and qualitatively compare relative differences in 

fluorescent intensity between controls and islets coated with a single PLLM-g[xc]-PEGn 

bilayer or eight bilayers. To form a single bilayer, islets were incubated in PLLM-g[xc]-

PEGn for 5 minutes, rinsed four times with serum free RPMI, incubated in F-Alg (2 

mg/ml) for 5 minutes, and finally rinsed again four times. This process was repeated an 

additional seven times to generate an eight bilayer film. As a control, the polycation was 

replaced with RPMI (i.e., solvent only) and islets were treated in an otherwise similar 

manner. As shown in Figure 3.6A, in which P12P24[4] was used as the polycation in the 

assembly of an eight bilayer film, fluorescent emission from F-Alg was observed 

surrounding the islet periphery; qualitatively comparable results were obtained when 

using P12P12[3.3], P12P4[2.5], and P45P4[1.7] as the polycation. By contrast, controls 

treated only with alginate in a layer-by-layer manner (Figure 3.6C) demonstrated 

essentially no fluorescent emission from F-Alg, indicating that the polycationic 

component is necessary to facilitate immobilization of alginate on the islet surface. 
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Moreover, a dramatic difference in fluorescent intensity was observed between islets 

coated with eight bilayers (Figure 3.6A) and those coated with a single bilayer (Figure 

3.6B). When P12P24[4] and P12P12[3.3] were used as film components, a discernable 

difference in fluorescent intensity could also be detected between controls and islets 

incubated with a single bilayer; this difference was not clearly evident when P12P4[2.5] 

or P45P4[1.7] were used, a potential indicator that less alginate becomes incorporated in 

the first bilayer when polycations with lower charge density are used.  Collectively, these 

observations indicate that polyelectrolyte multilayer films can be assembled on the 

surface of islets via alternating deposition of PLLM-g[xc]-PEGn and alginate.      

 In accord with its role as a component of a cell surface-supported thin film, 

alginate was concentrated predominately on the islet surface, as fluorescent emission 

did not colocalize with cell nuclei (Figure 3.6D). To a lesser extent, AlgF could also be 

identified in the interstitial space between individual cells, consistent with the observed 

adsorption of PLLM-g[xc]-PEGn in these regions. By contrast, incubation of islets with 

non-modified PLL (80 µM, 5 minutes), followed by rinsing and incubation with F-Alg (2 

mg/ml, 5 minutes) resulted in transport of alginate into the cytoplasm of individual cells 

on the islet periphery (Figure 3.6E,F), likely a result of membrane permeabilization by 

PLL and subsequent diffusion of alginate into the cytoplasm. 

 Importantly, the viability of islets coated with eight bilayer PLLM-g[xc]-

PEGn/alginate PEM films was found to be statistically indistinguishable (p>0.01) from 

untreated controls both immediately after film formation as well as 18-24 hours later, 

indicating that film formation does not induce late necrosis or apoptosis (Table 3.2). 

Additionally, islets could be incubated with PLLM-g[xc]-PEGn copolymers (80 µM in DPBS 

supplemented with 11 mM glucose) for six hours with minimal or no significant decrease 

in islet viability (Table 3.3), a promising indication that considerably more layers may be 
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assembled if desired, and a further testament to the low cytotoxicity associated with 

these copolymers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.1. Assembly of cell surface-supported polyelectrolyte multilayer thin films via 
layer-by-layer deposition of poly(L-lysine)-g[x]-poly(ethylene glycol)n at the critical 
grafting ratio, xc, and alginate.  
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Figure 3.6. Polyelectrolyte multilayer (PEM) films can be assembled on individual 
pancreatic islets through layer-by-layer deposition of PLLM-g[xc]-PEGn copolymers and 
alginate. Using P12P24[4] and fluorescein labeled alginate as polycation and polyanion, 
respectively, confocal micrographs of coated islets reveal dramatic differences in 
fluorescent intensity associated with films comprised of eight bilayers (A) and a single 
bilayer (B). Qualitatively comparable images were obtained using P12P12[3.3], 
P12P4[2.5], and P45P4[1.7] as polycations. Controls treated only with alginate eight 
times in an analogous layer-by-layer manner (C) demonstrate little or no fluorescence, 
indicating that alginate deposition is polycation-dependent. After assembly of eight 
bilayers, alginate incorporated into PEM films is localized predominantly on the 
extracellular surface of islets (D). By contrast, fabrication of a single PLL/alginate bilayer 
results in intercellular internalization of alginate by peripheral cells (E,F). Cell nuclei were 
identified via Hoechst staining (scale bar: A,B,C,E = 50 µm; D,E = 10 µm). 
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Table 3.2. Islet viability immediately and 18-24 hours after assembly of a  
(PLLM-g[xc]-PEGn/alginate)8 PEM film 

Polycation Used Immediate* 18-24 h post-coating* 

P12P24[4.0] 100.2 ± 1.3 99.3 ± 1.5 
P12P12[3.3] 100.1 ± 1.9 100.7 ± 1.5 
P12P4[2.5] 100.4 ± 0.8 99.3 ± 1.4 
P45P4[1.7] 99.0 ± 1.4 100.9 ± 1.2 

∗No statistical difference vs. other groups (p>0.05) or vs. untreated controls (p>0.01) 

Table 3.3. Islet viability after six hour polycation incubation 

Polycation Used Viability (% untreated control)* 

P12P24[4.0] 99.4 ± 1.1 
P12P12[3.3] 99.5 ± 1.7 
P12P4[2.5] 99.5 ± 2.2 
P45P4[1.7] 99.8 ± 2.0 

*in DPBS supplemented with 11 mM glucose. No statistical 
difference between groups (p>0.05) or relative to untreated 
controls (p>0.01).  
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 PLLM-g[xc]-PEGn copolymers generate PEM films with unique properties. 

Employing PLLM-g[x]-PEGn copolymers of variable charge density and PEG length and 

content offers the possibility of generating PEM films of unique or tailored properties. To 

gain insight into the properties of PEM films assembled using PLLM-g[x]-PEGn at the 

critical grafting ratio, xc, film growth characteristics and properties were investigated on 

planar substrates by solid-state UV-vis spectroscopy and ellipsometry. Solid-state 

spectroscopy (Figure 3.7) of films assembled using P12P4[2.5], P1212[3.3], and 

P12P24[4] as polycations demonstrate a non-linear, exponential-like growth pattern 

through 12 bilayers, with P12P24[4] displaying the steepest growth profile. Similar 

profiles have been reported for films assembled using non-modified PLL and alginate 

[270] or hyaluronic acid [319], and are generally distinguished from linear growth profiles 

by the ability of film constituents to diffuse within the film during assembly [320, 321].  

Films assembled using P45P4[1.7] displayed evidence of film growth through six 

bilayers, but reached a plateau beyond this point, likely due to the low charge density 

(i.e., 40%) associated with this polymer. Incubation of all films in 5 M NaCl for 20 

minutes resulted in complete film decomposition (Figure 3.7B), demonstrating that 

indeed PLLM-g[x]-PEGn/alginate films are assembled via electrostatic interactions [322].  

 Film thickness was measured using ellipsometry (Table 3.4) after formation of 4, 

6, and 8 bilayers assembled using P12P4[2.5], P1212[3.3], and P12P24[4] as 

polycations; limited ellipsometric characterization of films assembled with P45P4[1.7] 

was performed due to stagnated growth observed in UV-vis spectroscopy experiments.  

Ellipsometric film thickness measurements provided further evidence of multilayer film 

growth, as thickness was found to increase with increasing layer number (Figure 3.8). 

Significantly, film thickness was also dependent on the PLL12-g[xc]-PEGn polycation 

employed for film formation. P12P24[4] yielded significantly thicker films at 4, 6, and 8 

bilayers than both P12P12[3.3] and P12P4[2.5] (p<0.01). Films assembled with 
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P12P12[3.3] were significantly thicker than films assembled with P12P12[4] at both 6 

and 8 bilayers (p<0.01), though thicknesses were statistically comparable (p>0.05) after 

assembly of four bilayers. Hence, film thickness may be tailored through control of layer 

number as well as PLL12-g[xc]-PEGn properties.   

 After fabrication of eight bilayers, UV-vis spectroscopy revealed no significant 

difference (p>0.05) in absorbance at 495 nm between films assembled with P12P4[2.5] 

and P12P12[3.3]. Ellipsometric film thickness measurements, however, indicate that 

P12P12[3.3] films are significantly thicker than P12P4[2.5] films, suggesting an 

increased concentration of polycation in films assembled with P12P4[2.5]. Similarly, after 

fabrication of eight bilayers, films assembled using P12P24[4] are twice as thick as those 

assembled using P12P12[3.3], while absorbance at 495 nm is only 1.3 fold greater, 

again suggesting a difference in the interfilm concentration of the polycationic 

component. As the charge density of these polycations differs by only 5%, these 

observations suggest that the observed doubling of film thickness may be due to 

increased incorporation of PEG in films assembled using P12P24[4]. Hence, 

polyelectrolyte multilayer films of diverse thickness, structure, and composition may be 

generated using PLL12-g[x]-PEGn as film constituents, potentially allowing film properties 

to be tailored for a desired application. 
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Figure 3.7. Polyelectrolyte multilayer (PEM) films assembled using PLLM-g[xc]-PEGn 
copolymers and alginate demonstrate unique growth profiles on planar substrates. Solid-
state UV-vis spectroscopy was used to monitor film growth on quartz substrates. (A) 
Example of absorbance spectra recorded after the second PLLM-g[xc]-PEGn (e.g., 
P12P24[4]) incubation and every other incubation thereafter through twelve depositions. 
(B) Absorbance values at 495 nm, corrected to account for differences in degree of 
labeling, as a function of layer number (mean ± SD). Use of P12P4[2.5] (●), P12P12[3.3] 
(○), and P12P24[4] (▼) as polycations resulted in layer-by-layer film growth with a non-
linear, exponential-like growth pattern. By contrast, film growth using P45P4[1.7] (∆) 
stagnated after six bilayers. After incubation of all films in 5 M NaCl for 20 minutes 
absorbance at 495 nm was essentially absent, indicating complete film decomposition 
and, hence, assembly through electrostatic interactions. 
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Figure 3.8. Film thickness increases with layer number and may be tailored through 
PLL12kD-g[xc]-PEGn properties. Ellipsometric film thickness measurements (mean ± SD) 
after assembly of 4, 6, and 8 bilayers using P12P24[4] (●), P12P12[3.3] (○), and 
P12P4[2.5] (▼) as polycations and alginate as the polyanion. Measured thicknesses and 
statistical analysis are provided in Table 3.4.  
 

 

 

 

 

 

 

 

 

 

 

Table 3.4. Ellipsometric film thickness measurements 

 Layer Number 

Polycation Used 4 6 8 

P12P24[4.0] 12.6 ± 1.3 28.1 ± 1.2 72.4 ± 1.9 
P12P12[3.3] 8.5 ± 1.1a 16.9 ± 0.8 36.1 ± 2.6 
P12P4[2.5] 6.6 ± 1.5a 13.8 ± 1.1 26.0 ± 1.3 
P45P4[1.7] 6.8 ± 1.0a NP NP 

aNot statistically different from each other (p>0.5). All other entries are 
statistically significant from each other (p<0.05). NP: not performed 
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3.4.  DISCUSSION 

Layer-by-layer (LbL) polymer self assembly represents a facile approach for 

coating diverse materials of heterogeneous morphology and composition with nanothin 

films of tailored surface chemistry, permeability, and bioactivity [249, 251, 288]. 

Consequently, several groups have begun to explore the possibility of constructing LbL 

films directly on the surface of mammalian cells and tissues [265, 303-307, 323].  While 

covalent [306] and receptor-ligand interactions [303, 307] have recently been explored 

as driving forces for assembling films on pancreatic islets, the well documented toxicity 

of most synthetic and natural polycations [267-269, 298-302] poses a significant 

challenge in the design of cell surface-supported polyelectrolyte multilayer (PEM) films, 

the most commonly employed and versatile LbL film architecture [250]. Regardless, 

several groups have sought to generate PEM films on adherent cell monolayers [304] or 

single cells in suspension [305] using polycations classically employed in PEM film 

fabrication. Germain et al. [304] attempted to coat adherent MELN and HeLa cells using 

a number of polycations and polyanionic poly(styrene sulfonate) (PSS) [304].  Most 

polycations explored, including PLL, were extremely cytotoxic, though films of composed 

of nine poly(diallyldimethylammonium chloride)/PSS bilayers could be assembled with a 

modest ~25% decrease in cell viability.  Similarly, Veerabadran et al. have recently 

reported the assembly of PLL/hyaluronic acid multilayer films on mouse mesenchymal 

stem cells [305].  While different cell types are more susceptible to polycation-mediated 

damage than others [300, 301], these findings are surprising given the reported toxicity 

of PLL to a number of cell types at the concentrations (1 mg/ml) and deposition times 

(15 m) used in this investigation [269, 276, 298-302, 324, 325]. Regardless, as 

demonstrated herein, PLL exerts considerable toxicity to islets, and is an unsuitable film 

constituent for islet nanoencapsulation. Krol et al. have attempted coat human 

pancreatic islets with a poly(allylamine hydrochloride) (PAH)/PSS/PAH PEM film [265]; 
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assembly of this film on islets, however, has recently been shown to reduce islet viability 

by approximately 70% [303], consistent with the known toxicity of PAH towards islets 

[302]. To help prevent direct contact between PLL and the islet surface, Miura et al. have 

attempted to assemble a very thin alginate/PLL/alginate film on islets by first inserting a 

cationic lipid conjugate into islet cell membranes, thereby generating a positively 

charged islet surface to facilitate electrostatic binding of negatively charged alginate 

[323].  While conceptually appealing, careful inspection of confocal micrographs of 

coated islets suggests intercellular localization of FITC-labeled PLL within the outer few 

cell layers, a likely indicator of peripheral cell death. In light of both the enormous 

potential and versatility of PEM films and the challenges adherent to their assembly on 

viable mammalian cell and tissue surfaces, a need exists to develop cytocompatible 

polycations and/or PEM film architectures. 

 We have previously demonstrated that conjugation of poly(ethylene 

glycol)3.4kD(biotin) to ~40% of backbone lysine residues abrogates the cytotoxicity of PLL 

towards pancreatic islets, and that resultant the PLL-g-PEG3.4kD(biotin) copolymer (PPB) 

provided a foundation for film assembly via receptor-ligand interactions [303] (Chapter 

2). Given the non-toxic nature of this polymer, it was hypothesized that through proper 

control of grafting ratio and PEG chain length, PLL-g-PEG copolymers could be 

synthesized with sufficient charge density to initiate and propagate PEM film growth, 

while simultaneously preserving islet viability. However, most PLL-g-PEG copolymers 

synthesized to date, including PPB, have utilized ~2-5 kD PEG grafts which adopt a 

brush-like conformation upon interfacial adsorption of the copolymer, generating a steric 

barrier to protein adsorption and molecular recognition [262, 270-272, 284, 308]. While 

such brush-borders are useful for generating non-fouling interfaces, the steric barrier 

presented by grafted PEG chains might similarly hinder electrostatic interations with 

polyanions necessary to drive film growth. Therefore, in an effort to generate 
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cytocompatible polycations while minimizing steric barriers to electrostatic interactions, 

PLLM-g[x]-PEGn copolymers were synthesized with relatively short PEG chains 

consisting of 4, 12, or 24 repeat units.  

 Polycation charge density influences both cytotoxicity [267, 269] and PEM film 

growth [312-318]; while decreasing polycation charge density generally attenuates 

cytotoxicity, PEM film growth and properties may be compromised.  In this regard, 

polycation charge density represents a critical variable for the design of cell surface-

supported PEM films. As maintenance of cell viability is of utmost importance to islet 

encapsulation and surface engineering, the critical grafting ratio, xc, whereby islet 

viability was preserved for a given set of conditions (e.g., solvent, concentration, 

incubation time) was determined by assessing the toxicity of copolymers synthesized 

with various grafting ratios. Through determining xc the maximum permissible charge 

density for a given copolymer structure was achieved.  

 Though perhaps a simplification, it has been suggested that polycation 

cytotoxicity, beyond a critical number [276], is related to the number of attachments 

between cationic monomers and the cell surface, and, consequently, increasing the 

space between charged groups has been shown to decrease polycation toxicity [269, 

276, 301]. Accordingly, for all copolymers synthesized with a common PLL backbone 

and PEG chain length, a decrease in cytotoxicity was observed with decreasing grafting 

ratio, i.e. increased average distance between non-modified lysine residues. 

Interestingly, increasing the molecular weight of the PLL backbone significantly 

increased toxicity of PLLM-g[2.5]-PEG4, mandating increased PEG incorporation to 

abrogate cytotoxicity. A similar phenomenon has been reported by Mao et al. upon 

grafting of PEG chains to chitosan [326].  Polycation toxicity has been shown to increase 

with increasing molecular weight, as more attachment sites per chain are available to 

interact with the cell membrane [269, 299, 300].  Moreover, as a random graft 
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copolymer, the probability of achieving a given number of consecutive lysine residues 

increases with molecular weight, and it is conceivable that such highly charged 

segments may be capable of eliciting cytotoxicity [276]. Hence, higher charge densities 

may be achieved by reducing the molecular weight of PLL.  

 In an effort to increase charge density or eliminate mPEG4 grafts, copolymers 

bearing longer PEG chains (i.e., P12P12[x] and P12P24[x]) or no PEG chains at all 

(P12Ac[x]) were generated and cytotoxicity assessed. Interestingly, at a charge density 

of ~55-60%, substitution of mPEG4 grafts with acetate groups resulted in a significant 

increase in polymer toxicity, suggesting a role for grafted mPEG4 that is independent of 

net charge. Accordingly, increasing the length of PEG chains resulted in a significant 

decrease in polycation toxicity for a given grafting ratio. Similar findings have recently 

been reported for chitosan-g-PEG copolymers, as increasing the molecular weight of 

PEG from 550 Da (~PEG12) to 5000 Da (~PEG114) was associated with dramatic 

reductions in toxicity at a common charge density [326].  While a roughly linear 

relationship between grafted PEGn length and critical grafting ratio was observed 

between n=4 and n=12, previous results indicate that conjugation of biotin-PEG70 chains 

to a similar PLL backbone does not abrogate toxicity at a grafting ratio of ~5.0 [303], 

and, therefore, it is anticipated that the PEG chain length dependence approaches an 

asymptotic limit. 

 Collectively, these findings suggest a cooperative relationship between grafted 

PEG chains and charge density in the attenuation of PLL cytotoxicity, a phenomenon 

that may be explained by the physiochemical properties of polymers in solution and at 

the cell interface. In addition to charge density, polycation architecture and 

conformational flexibility influence the specific arrangement of cationic monomers at the 

cell interface [269, 276, 298, 301].  Highly flexible polymers, such as PLL, more readily 

contort to access anionic groups, whereas charged residues within globular or 



www.manaraa.com

 93

dendrimeric polycations are constrained. In this regard, steric repulsion between grafted 

PEG chains may restrict the conformational flexibility of the PLL backbone, an effect 

anticipated to be pronounced with longer PEG grafts. Indeed, such molecular “bottle 

brush” conformations have recently been described for comparable PLL-g-PEG 

copolymers, with an attendant increase in persistence length at decreased grafting ratios 

and longer PEG chains [327]. Decreased chain conformational freedom might also 

explain the common observation that poly(L-lysine) adsorbed to a flat surface, for 

example, glass coverslips, promotes cell adhesion, while not eliciting toxicity. 

Additionally, PLL has been shown to transition from a random coil in solution to an alpha 

helical conformation at the cell surface in order to maximize interfacial contact [328], a 

phenomenon that may be sterically interrupted by grafted PEG in a chain length-

dependent manner.  The interplay between electrostatic attraction of the PLL backbone 

to a negatively charged surface and steric repulsion caused by grafted PEG chains 

dictates the adsorption behavior of PLL-g-PEG copolymers [329], and, potentially, the 

density and distribution of cationic monomers in contact with the cell surface.  Adsorbed 

polyelectrolytes can be considered to consist of loops and trains, where two trains which 

make intimate contact with the surface are connected by loops that extend into the bulk 

[330].  Through steric considerations, PEG grafts would reasonably be expected to 

increase the length of loops between trains: cationic monomers a sufficient distance 

from a grafted PEG chain would be free to interact with anionic groups on the cell 

membrane (trains), whereas those in closer proximity to PEG chains may be sterically 

hindered from such interactions, and, therefore, extend towards the bulk (loops). 

Increasing PEG chain length would be expected to further interfere with electrostatic 

interactions [327], forcing more cationic monomers into loops away from the cell surface. 

Hence, in such a model, increasing PEG length would have a similar effect to 

decreasing charge density in that the effective distance between charged groups 
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interacting with the cell surface is increased, thereby allowing higher main chain charge 

densities without increasing cytotoxicity.  

 To a lesser but notable extent, non-electrostatic interactions between polycations 

and cell surfaces also play a role in mediating cytotoxicity [331-333]. As such, otherwise 

identical polycations with respect to size, charge, and flexibility may invoke dramatically 

different cytotoxic effects depending on their specific molecular make up. Most notably, 

polymer hydrophobicity acts cooperatively with electrostatic interactions in disrupting cell 

membranes, at least in part, through increasing the favorability of interactions between 

the polymer and lipid tails within the plasma membrane [332-335].  Structurally identical 

poly(L-lysine)-based peptides bearing a high density of serine were found to be 

significantly less toxic than those bearing leucine residues, presumably due to 

incorporation of hydroxyl groups in the former [333].  As a hydrophilic macromolecule, 

PEG chains may act through similar mechanisms to reduce toxicity. Alternatively, 

administration of soluble PEG and PEG-based amphiphilic copolymers, most notably 

Poloxamers, to cells damaged through mechanical, thermal, or electrical insult has been 

shown to promote repair of damaged cell membranes [336-339]. Though mechanisms of 

repair remain poorly understood, PEG is thought to transiently seal the compromised 

portion of the membrane while lipids rearrange and re-establishment membrane integrity 

[337, 338].  As polycations exert toxicity in large part by generation of nanoscale holes in 

the cell membrane [267, 268], it is conceivable that grafted PEG chains may inhibit pore 

formation or promote sealing of pores generated by adjacent lysine residues. Given the 

importance of cell viability in the assembly of cell surface-supported PEM films and the 

complexity of biochemical and biophysical processes that dictate polycation toxicity, 

mechanisms through which grafting of PEG chains to PLL attenuate toxicity should be 

further investigated.  
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 As the cell surface serves as the substrate for PEM film assembly, polycation-

mediated membrane pore formation may also have adverse effects on the formation 

and/or properties of PEM films. The formation of nanoscale pores allows unregulated 

efflux of molecules across the plasma membrane, not only contributing to cell death, but 

also facilitating the passage of the polycation itself into the cytoplasm [267-269]. Indeed, 

PLL and P12Ac[2.5], both of which were found to exert significant toxicity, were localized 

predominantly intracellularly, evenly distributed throughout the cytoplasm of peripheral 

cells.  Accordingly, attempts to assemble a PLL-alginate bilayer resulted in diffusion of 

alginate across the cell membrane and concentration within the cytoplasm. Cytotoxicity 

notwithstanding, membrane pore formation appears to lead to the formation of 

intracellular polyelectrolyte complexes rather than cell surface-supported films per se, an 

important distinction in light of the properties and potential applications of each. Previous 

reports utilizing conventional polycations to assemble films on islets [265, 323] have 

inadequately investigated the localization of film components and it is unclear if these 

approaches truly yield thin films.   

 Conversely, PLLM-g[x]-PEGn copolymers at the critical grafting ratio remain 

localized extracellularly, suggesting that grafting of PEG chains to PLL inhibits formation 

of membrane pores, a likely cause or consequence of reduced cytotoxicity.  More 

importantly, however, PLLM-g[xc]-PEGn copolymers adsorb to all accessible surfaces of 

pancreatic islets, presumably through electrostatic interactions, providing a foundation 

upon which film growth may be initiated.  Among other variables, the capacity of 

adsorbed PLLM-g[xc]-PEGn copolymers to initiate, and subsequently propagate, PEM film 

growth is thought to be dictated by an interplay between main chain charge density 

(electrostatic attraction) [312-314] and the length of grafted PEG chains (steric repulsion) 

[329, 340]. Hence, upon tailoring grafting ratio and PEG chain length to accommodate 

high islet viability, it was unclear whether the structure of resultant copolymers would 
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facilitate PEM film formation.  In light of these constraints, it is perhaps not coincidental 

that, to the author’s knowledge, only a single report exists to date describing fabrication 

of a PEM film using a polyelectrolyte with grafted PEG chains [340].  In this report, 

Boulmedais and co-workers assembled several bilayers atop an existing PEM structure 

using PLL and poly(L-glutamic acid) grafted with 2 kD PEG chains at a grafting ratio of 

~5.0.   

 Using confocal microscopy and fluorescently-labeled alginate, which alone does 

not adsorb to islets in an appreciable manner, PEM film assembly on the surface of 

islets was clearly demonstrated, as evidenced by obvious differences in the fluorescent 

intensity between islets coated with none, one, or eight bilayers.  The capacity of 

copolymers to initiate film growth suggests a sufficient number of lysine residues remain 

free from association with negatively charged groups on the cell membrane, an effect 

which, as discussed previously, may also contribute to reduced cytotoxicity.  Of critical 

importance, islet viability and morphology were maintained after fabrication of eight 

bilayers, and, not coincidently, film growth was observed almost exclusively on the 

extracellular surface of individual cells within pancreatic islets.  Interestingly, PEGylated 

polycations have also been used routinely to mediate intracellular delivery of nucleic 

acids [341-345], an objective that appears to contrast starkly with the development of 

polycations as components of cell surface-supported PEM films.  As the polymer 

properties and/or biochemical mechanisms that mediate intracellular delivery may be 

different than those which promote polymer adsorption to the cell surface, further 

elucidation of such mechanisms will be critical to the rational design of LbL films as 

conformal cell coatings.   

 Though the properties of films assembled on the chemically and geometrically 

hetereogenous interfaces presented by cells may be different than those assembled on 

idealized planar supports, investigation of films by UV-vis spectroscopy and ellipsometry 
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was performed to provide insight into relationships between copolymer structure and film 

properties. Solid-state absorption spectra of films assembled using P12P4[2.5], 

P1212[3.3], and P12P24[4] as polycations demonstrated a non-linear, exponential-like 

growth pattern.  Exponential-like growth is anticipated to yield thicker films for a given 

number of polymer depositions [320, 346], minimizing polycation exposure and coating 

time. By contrast, LbL films assembled as conformal islet coatings through covalent 

[306] or receptor-ligand [303] interactions demonstrate linear growth profiles.  While 

perhaps less commonly observed than linear PEM film growth [249, 347-349], 

exponential film growth has been reported to occur for a number of polyelectrolyte pairs 

and/or solvent conditions [253, 319-321, 346, 350].  Interestingly, PLL appears 

commonly in the assembly of such films, including those assembled using alginate as 

the polyanion [253]. Exponential film growth is generally considered to occur as a 

consequence of polyelectrolyte diffusion into and out of the film during deposition and 

washing steps, leading to increased polyelectrolyte complexation at the outer surface of 

the film [319-321].  By contrast, linear growth is characterized by each layer penetrating 

only with neighboring ones [249, 351, 352]. However, while clearly non-linear, the growth 

profiles observed with UV-vis spectroscopy may also not be properly described as truly 

exponential. Indeed, Porcel et al. have recently described an exponential-to-linear 

transition that occurs during the growth of PLL/hyaluronic acid films, which demonstrate 

similar growth profiles to those observed in Figure 3.7 [353].  Importantly, these authors 

speculate that exponential-to-linear transitions occur due to a progressive restructuring 

or densification that prevents the aforementioned intrafilm diffusion of polyelectrolytes to 

deeper regions of the film [353].  In light of such a mechanism, the extent of deviation 

from exponential growth may reflect different degrees of film densification, a possible 

indication that film permeability may be controlled through both copolymer structure and 

layer number. Prior to this transition, however, intrafilm diffusion of the polycation [320, 
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354] might permit its interaction with the cell membrane even after deposition of a 

number of layers, further reinforcing the importance of cytocompatible polycations.   

 While increasing polycation molecular weight has been reported to yield thicker 

films [310, 355], film growth stagnated when P45P4[1.7] was used in film formation, 

likely as a result of the 60% decrease in charge density necessary to accommodate 

polycation cytocompatibility.  Charge density plays a critical role in dictating the growth 

and properties of PEM films, and several investigators have defined a critical charge 

density beyond which film growth is no longer possible [311-318].  A considerable range 

of critical charge densities have been reported,  from 10% [317] to 75% [312], with 

dependence on the polyelectrolyte pair used, solvent conditions, the charge density and 

size of the polyanion, and the prevalence of secondary, non-electrostatic interactions 

(e.g., hydrogen bonding).  While not explicitly determined, a charge density above 40% 

appears to be necessary to promote assembly of films using P45P4 copolymers; such 

polymers, however, were found to exert cytoxicity towards islets. While such effects 

might be remedied through increasing the length of PEG grafts, these investigations 

suggest that PLL-g-PEG copolymers synthesized with lower molecular weight PLL 

backbones are structurally more suitable for assembling PEM films on islets.  

 Ellipsometric characterization revealed significant differences in film thickness 

depending on the PLL12kD-g[xc]-PEGn copolymer employed, providing a potential 

opportunity to tailor film thickness through both layer number and polymer structure. 

Depending on the polycation used, film thicknesses ranged from 25-70 nm in the dry 

state after fabrication of eight bilayers. PEM films, however, have been shown to swell 

considerably upon hydration [356-359]; for example, films assembled using PLL and 

poly(L-glutamic acid) were found to swell by ~150% [358], whereas chitosan/hyaluronic 

acid films may swell by as much 400% [356]. Moreover, given the high PEG content of 

these films, even greater degrees of swelling would be reasonably expected [360, 361]. 
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Relative to those with linear growth profiles, films presenting exponential-like behavior 

are considered to be much less structured, adopting characteristics similar to 

viscoelastic hydrogels [362]. Indeed, upon assembly of twelve bilayers, films appeared 

highly hydrated and presented a gel-like appearance, particularly when P12P24[4] was 

used, a finding consistent with previous reports [253, 349].  Hence, while explicitly 

determining the hydrated thickness of films is an area of future investigation, in light of 

these considerations, it is reasonable to assume that eight bilayer films in the hydrated 

state, such as those on assembled on islets, may be on the order of hundreds of 

nanometers thick.  By contrast, conformal islet coating strategies utilizing interfacial 

polymerization [147, 148], selective withdrawal [146], or emulsification [144] yield 5-50 

micron thick coatings. Hence, assembly of polyelectrolyte multilayer films on the surface 

of islets allows conformal coatings many orders of magnitude thinner to be created. 

 It is unclear whether or not a critical or optimal thickness for conformal islet 

coatings exists.  Previous reports describing the assembly of PEM films comprised of 

one or two bilayers [265, 323] are likely on the order of 10 nm thick [253, 346], 

comparable to the size of the cell surface targets they intend to cover.  Elbert et al. 

demonstrated that 50 nm thick (measured in the dry state) PLL/alginate films prevented 

adhesion of fibroblasts to extracellular matrix, whereas 10 nm films proved less effective. 

Interestingly, films assembled using P12P4[2.5] are of comparable thickness (~25-30 

nm) to films assembled using unmodified PLL  [253], a potential indicator of comparable 

structure.  Similarly, Thierry et al. [254] demonstrated that assembly of five 

chitosan/hyaluronic acid bilayers, estimated to be on the order of 20 nm in the dry state 

[356], inhibited platelet deposition to a damaged artery, a finding with potential 

implications for attenuating platelet-islet interactions during intraportal islet 

transplantation [286].  While clearly dependent on a number of other film properties as 
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well, most notably permeability and uniformity, coatings of nanoscale thickness may be 

successfully used as barriers to molecular recognition.  

 

3.5.  CONCLUSIONS 

 Cell surface-supported polyelectrolyte multilayer films assembled through layer-

by-layer deposition of cytocompatible PLL-g-PEG copolymers and alginate provide a 

novel and versatile approach to conformal islet coating and surface modification.  

Through appropriate control of structural variables, PLL-g-PEG copolymers could be 

rendered effectively non-toxic while simultaneously facilitating the assembly of a unique 

class of PEM films with tunable properties.  Additionally, through elucidating 

relationships between PLL-g-PEG copolymer structure, cytotoxicity, and PEM film 

properties, this work begins to establish a conceptual framework for the rational design 

of cell and tissue-surface supported nanoassemblies.  While further characterization and 

optimization of film properties may be necessary to generate effective conformal barriers 

for islet transplantation, layer-by-layer assembly of PEM films offers an opportunity to 

decrease coating thickness by many orders of magnitude in a scalable manner without 

loss of islet number or viability.  Finally, in light of the numerous and diverse biomedical 

and biotechnological applications of PEM films, the potential to translate such 

functionality to the surface of viable mammalian cells and tissue offers rich opportunities 

for re-engineering the biophysiochemical properties of cell and tissue interfaces.  
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CHAPTER 4 

A Modular Approach to Cell and Tissue Surface Engineering Using 

Cytocompatible Poly(L-Lysine)-graft-poly(ethylene glycol) Copolymers and 

Polyelectrolyte Multilayer Films  

 

4.1 INTRODUCTION 

 Cell surface engineering bestows control of the molecular and biochemical 

composition of the extracellular surface of mammalian cells.  Cell surface engineering 

has introduced enzymes [363], receptors [364, 365], carbohydrates [366], fatty acids 

[367], fluorophores and photoaffinity labels [368], organic and inorganic nanostructures 

[303, 369], synthetic polymers [165, 270], reactive handles [370, 371], and peptide 

sequences [368, 372, 373] to the complex biochemical milieu of the cell surface through 

genetic, metabolic, enzymatic, chemical, and physical processes.  Accordingly, cell 

surface engineering has provided an invaluable tool for investigating processes 

governed by cell-surface molecules, including signal transduction, endocytosis, 

membrane transport, and cell-cell and cell-matrix interactions [374-380]. More recently, 

strategies used for resurfacing cell and tissue interfaces have expanded beyond basic 

research and into biotechnological and biomedical applications, including drug delivery, 

cell-based therapeutics, biosensing, and tissue engineering, whereby cell surfaces may 

be engineered to locally control specific biochemical or cellular responses, [13, 227, 236, 

363, 364, 377, 381, 382]. While genetic engineering has afforded unique opportunities 

for the regulated, ‘de novo’ synthesis of cell surface proteins, the utility of this approach 

to present lipids, carbohydrates, or synthetic molecules is clearly limited [382].  

Moreover, genetic modification of primary cells and complex multicellular tissues has 

proven a more difficult challenge, particularly in vivo.   
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 Accordingly, investigators have sought to develop strategies through which to 

incorporate exogenously derived molecules along side native constituents of the cell 

surface.  Covalent coupling of molecules directly to cell surface proteins and 

carbohydrates is one such approach.  Critical to the realization of this strategy, however, 

has been the development of organic chemical reactions that selectively target specific 

moieties on the cell surface without adversely effecting cell viability [157, 370, 374, 383, 

384].  While the cell surface naturally presents a number of potentially reactive groups, 

only the amino group has found widespread use as a reactive handle, generally through 

reaction with N-hydroxysuccinimide ester derivatives [157]. Hence, a number of 

strategies have recently been developed to introduce noncanonical reactive groups to 

the cell surface that may undergo chemoselective ligation with a reactive partner in the 

bulk.  A simple approach has been through selective chemical oxidation of terminal 

sialic-acid resides, facilitating coupling between the resultant aldehyde and hydrazide-, 

aminooxy-, β-amino thiol-, or thiosemicarbazide-functionalized molecules [384].  More 

recently, the metabolic machinery of cells has been harnessed to facilitate integration of 

unnatural biosynthetic precursors bearing ketones and azides into cell surface proteins 

and carbohydrates [370, 371, 376, 383].  Importantly, concomitant with cell-surface 

presentation of azido groups has been the development of novel compounds that react 

specifically and efficiently with azides under physiologic conditions [370, 385-387],  

some of which have recently been employed for in vivo cell surface engineering [378, 

386].  While clearly promising, the dependence on cellular metabolism of synthetic 

precursors may limit the utility of this approach in cell types that are recalcitrant to 

tampering with metabolic pathways or in applications where rapid surface modification is 

desired.  Exogenous enzymes have also been used to generate functional groups or 

otherwise modify cell and tissue surfaces; cell surface aldehyde groups may be 

generated using galactose oxidase [384], while fucosyltransferase and sialytransferases 
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have been utilized to transfer unnatural sugar residues to cell surface carbohydrates 

[157, 382]. More recently, generation of membrane fusion proteins bearing appropriate 

peptide recognition sequences has emerged as a strategy for enzymatically ligating 

molecules to the cell surface [368, 369, 372, 373, 379, 388].  While constrained by the 

limitations of genetic engineering, such approaches allow exogenous molecules to be 

coupled to the cell surface in a highly selective, site-specific manner. Noncovalent 

approaches to cell-surface engineering have also been explored, most commonly 

through passive insertion of exogenous molecules bearing lipophilic domains into the 

plasma membrane. Glycosylphosphatidylinositol-(GPI) anchored proteins removed from 

one cell membrane efficiently insert into a host cell membrane, providing a non-genetic 

approach to manipulating the cell surface proteome [157, 377]. Likewise, synthetic 

mimics of receptors [364] and glyolipids [366] have been presented on the cell surface 

using hydrophobic anchors including fatty acids, steroids, lipophilic peptides, and 

cholesterol.  More recently, amphiphilic copolymers have been introduced to the cell 

surface through similar mechanisms [287, 389]. 

 We have recently demonstrated that poly(L-lysine)-graft-poly(ethylene gycol) 

(PLL-g-PEG) copolymers could be rendered non-toxic to pancreatic islets through 

appropriate control of structural variables, namely grafting ratio and PEG chain length 

(Chapter 2 and 3). As a cause or consequence of this phenomenon, PLL-g-PEG 

copolymers adsorb to accessible extracellular interfaces, effectively re-engineering the 

islet surface with lysine groups and short PEG chains. Based on these findings, we have 

postulated that PLL-g-PEG copolymers may be used as ‘cell surface active’ molecular 

carriers for reactive handles, ligands, oligosaccharides, peptides, and other moieties. 

Towards this end, PLL-g-PEG copolymers bearing PEG grafts terminated with functional 

groups were synthesized and used, alone or in combination, to display biotin, hydrazide, 
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and azide moieties on the cell surface, which selectively captured probes through 

biorecognition or chemoselective ligation.  

 Appropriately structured PLL-g-PEG copolymers may also be used to initiate and 

propagate the assembly of cell surface-supported polyelectrolyte multilayer (PEM) films 

through a process of layer-by-layer (LbL) polymer self assembly (Chapter 3). PEM film 

assembly has recently emerged as a facile and versatile strategy for noncovalently 

engineering the surface chemistry and molecular landscape of biomedical devices and 

materials [288, 296, 390].  Through proper choice of film architecture and constituents, 

enzymes and other proteins [255, 256, 391-393], DNA [257, 394, 395], lipid vesicles 

[258], drug-containing nanoparticles [259], bioactive motifs [260, 261, 396], and reactive 

handles [291, 397] may be integrated into PEM films. However, until recently, the 

cytotoxicity associated with conventional polycations and film architectures has 

precluded the translation of such opportunities to the surface of viable cells and tissues.  

Herein, we present an example of cell surface engineering using cytocompatible PEM 

films assembled using an appropriately designed PLL-g-PEG copolymer and a naturally 

occurring polysaccharide, alginate, chemically modified to contain aldehyde groups 

(alginate-CHO). Using LbL self assembly, alginate-CHO could be introduced to the cell 

surface and aldehyde groups used to capture hydrazide-functionalized molecules.  

Hence, as a consequence of their low cytotoxicity, cell surface localization, and capacity 

to mediate immobilization of negatively charged macromolecules through PEM film 

assembly, PLL-g-PEG copolymers provide a modular, noncovalent approach to cell and 

tissue surface engineering. 
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4.2. MATERIALS AND METHODS 
 
 Synthesis and characterization of functionalized poly(L-lysine)-g[x]-

poly(ethylene glycol)n copolymers. Poly(L-lysine)12kD-g[x]-poly(ethylene glycol)n(R) 

copolymers (x=grafting ratio, n=number of PEG repeat units, R=PEG head group) were 

synthesized via active ester coupling between primary amines of the PLL backbone and 

heterobifunctional poly(ethylene glycol)n derivatized with an N-hydroxysuccinimidyl 

(NHS)-ester on one end and a methyl, biotin, t-BOC protected hydrazide, or azide group 

on the other.  NHS-PEG4(CH3) and NHS-PEG4(biotin) were purchased from Pierce 

Biotechnology (Rockford, IL) and used as received. NHS-PEG4(t-BOC-hydrazide), NHS-

PEG4(N3), and NHS-PEG12(N3) were purchased from Quanta Biodesign (Powell, Ohio) 

and vacuum dried overnight before use to remove trace amounts of residual organic 

solvent. Poly(L-lysine)hydrobromide (Sigma Aldrich, St. Louis, Mw=12 kD by MALLS) 

was dissolved at 5 mg/ml in dilute phosphate buffered saline (7.7 mM NaCl, 0.28 mM 

Na2HPO4, pH=7.4) for 30 minutes at room temperature. PEGylation reagents were 

dissolved at 250 mM in dry DMSO (Pierce Biotechnology) and slowly added to PLL 

under vigorous stirring.  After 120 minutes, 10x Dubelcco’s phosphate buffered saline 

(Mediatech, Inc., Manassas, VA) was added to the reaction mixture 1:10 by volume; this 

was repeated at 150 and 180 minutes, after which the reaction was allowed to proceed 

for an additional 21 hours. This coupling protocol was empirically determined to yield 

more efficient grafting of PEG chains to PLL than simple mixing of constituents in PBS 

as generally performed. The product was transferred to dialysis cassettes (Slide-A-Lyzer 

Dialysis Cassette, 3.5 kD MWCO, Pierce Biotechnology) and dialyzed first against DPBS 

(pH 7.0, 3 x 24 hours, Mediatech, Inc.) and, subsequently against distilled deionized 

water (3 x 24 hours). The product was then lyophilized until completely dry and stored at 

-20°C prior to use.   
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 To deprotect hydrazide-functionalized copolymers, t-BOC was removed by 

dissolving PLL12kD-g[x]-PEG4(t-BOC-NHNH2) copolymers in 75% (v/v in water) 

trifluoroacetic acid (TFA; Sigma Aldrich, St. Louis, MO) for 18 hours. TFA was then 

neutralized by addition of saturated sodium bicarbonate solution, and the product again 

dialyzed against distilled deionized water (4 x 24 hours) and lyophilized until completely 

dry.  

 PEGylation reagents were added to PLL at various stoichiometric ratios to 

generate copolymers with a range of grafting ratios, x, where x is the average number of 

modified and unmodified lysine residues per grafted side chain. The grafting ratio of 

PLL12kD-g[x]-PEGn polymers was determined using 1H NMR (INOVA 600) by taking the 

ratio of chemical shifts assigned to mPEG linked to lysine (3.15 ppm, m, -

CH2NHC(O)OCH2-) and ungrafted lysine chains (2.95 ppm, m, -CH2NH3
+). In the case of 

hydrazide functionalized copolymers, successful deprotection of the t-BOC group was 

verified by the absence of the tert-butyl peak at 1.45 ppm. In these investigations, only 

polymers with grafting ratios between 2.0 and 2.5 were used; Table 4.1 summarizes the 

properties of these copolymers, including copolymer molecular weight which can be 

estimated based on the grafting ratio and the molecular weight of PLL and grafted PEG 

chains [308].  

Table 4.1. Structure of copolymers employed in this work 

Polymer ID PLL MWa 
(kD) 

PEGn 
(n) 

Grafting 
Ratiob (x) 

% Lysine 
Modified 

Estimated MWc

(Da) 

P12P4(CH3) 12 4 2.3 43 12,850 

P12P4(biotin) 12 4 2.2 45 19,720 

P12P4(NHNH2) 12 4 2.1 47 17,610 

P12P4(N3) 12 4 2.3 43 14,200 

P12P12(N3) 12 12 2.6 39 21,500 

a: Molecular weight of PLL-HBr starting material (includes contribution of Br- counterion) = 
12 kD MW by MALLS, 1.2 Mw/Mm. b: Rounded to nearest tenth. c: 
MWcopolymer=MWPLL+(MWPLL/MWLys)(x-1)(MWPEG(R)), excludes contribution from Br-, non-
approximated grafting ratio used for calculation.  
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 Alginate-aldehyde synthesis and characterization. Alginate oxidation was 

performed as previously described [309]. Sodium alginate (UP LVM, MW 75 kD, 

NovaMatrix, Sandvika, Norway) was dissolved at 10 mg/ml in molecular grade water and 

0.25 M sodium metaperiodate (NaIO4, Sigma Aldrich, St. Louis, MO) in water was added 

at 0.10 equivalents with respect to uronate repeat units. After 24 hours, the reaction was 

quenched with 10 equivalents excess ethylene glycol (Sigma Aldrich), and the product 

dialyzed (Slide-A-Lyzer Dialysis Cassette, 3.5 kD MWCO, Pierce Biotechnology, 

Rockford, IL) 3 x 24 hours against distilled deionized water and lyophilized until 

completely dry. The extent of alginate oxidation was quantified as previously described 

[309]. Ten-fold excess of tert-butyl carbazate (Sigma Aldrich) was reacted with oxidized 

alginate for 24 hours. The amount of unreacted tert-butyl carbazate was determined by 

the addition of trinitrobenzenesulfonic acid (TNBS) solution (Sigma Aldrich), and 

measuring the absorbance of the colored complex formed at 334 nm. The degree of 

oxidation was determined to be ~10.2%, corresponding to ~20 aldehyde groups per 100 

monomer repeat units. To facilitate identification of oxidized alginate on islets with 

confocal microscopy, fluorescent labeling was achieved through thiosemicarbazone 

bond formation between aldehyde groups and fluorescein-5-thiosemicarbazide (Sigma 

Aldrich). Oxidized alginate (10% oxidation) was dissolved at 5 mg/ml in phosphate 

buffered saline (Mediatech, Inc., Manassas, VA) and fluorescein-5-thiosemicarbazide 

was added at an appropriate stoichiometric ratio to ensure labeling of no more than 5% 

of aldehyde groups. After reaction for 24 hours, non-reacted dye was removed via gel 

filtration (PD-10, GE Healthcare, Piscataway, NJ). The fluorescent conjugate, F-

Alginate-CHO10, was lyophilized and stored protected from light at -20°C. Degree of 

fluorescent labeling was quantified by UV-vis spectroscopy (Cary 50; Varian Inc., Palo 

Alto, CA) and determined to be less than 1%. 
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 Islet isolation.  Pancreatic islet isolations were performed, as previously 

described [264]. B10.BR-H2k H2-T18a/SgSnJ (B10) mice (8 weeks old, Jackson 

Laboratory Bar Harbor, ME) pancreata were removed after distension with collagenase 

P (1 mg/ml, Roche, Indianapolis, IN) through the common bile duct. Following digestion, 

islets were purified by a Ficoll-Histopaque discontinuous gradient (Ficoll: 1.108, 1.096, 

and 1.037; Mediatech Inc. Manassas, VA).  Isolated islets were cultured for 48-72 hours 

at 37°C in RPMI 1640 supplemented with 10% heat inactivated fetal calf serum, L-

glutamine (2 mM), and penicillin (100 U/ml), streptomycin (100 µg/ml) and amphotericin 

B (0.25 µg/ml) (Mediatech Inc, Manassas, VA), and media was changed daily.  

 Islet coating. Islets (<1000) were placed into 12 mm cell culture inserts with 12 

µm pores (Millicell-PCF; Millipore, Billercia, MA). Prior to introduction of polymer solution, 

islets were washed six times by adding 700 µl serum free RPMI 1640 to the insert, 

followed by gentle repeated tapping of the insert on a polystyrene surface to facilitate 

drainage of the wash solution through pores while retaining islets. The insert was placed 

into a well of a 24 well plate (Corning Inc., Corning, NY) and 700 µl of polymer solution 

was added to the cell culture insert.  After incubation, the insert was removed from the 

well, solution drained through the insert as described above, and islets washed four 

times as described above to ensure adequate removal of non-adsorbed polymer. To 

fabricate layer-by-layer thin films, the process of polymer incubation and washing was 

repeated using appropriate polymer solutions and incubation times.   

 For assembly of aldehyde-containing multilayer films, islets were incubated in 

PLL12kD-g[2.5]-PEG4(CH3) at 1 mg/ml in RPMI for 5 minutes, washed four times with 

RPMI 1640, incubated in F-Alginate-CHO10 at 2 mg/ml in RPMI for 5 minutes, and 

washed again to form a single bilayer. This process was repeated to assemble the 

desired number of bilayers. 
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Confocal microscopy. Confocal microscopy (Zeiss LSM 510 META; Carl Zeiss, 

Inc., Thornwood, NY) was used to identify fluorescently labeled film components and/or 

probes on islets. A representative population of islets selected at random was placed in 

silicon isolators (Grace Bio-Labs, Bend, OR) adhered to glass coverslips (Fisher 

Scientific) containing serum free RPMI 1640 or Dubelco’s phosphate buffered saline with 

calcium and magnesium. Coverslips were then placed on the microscope stage and 

images captured at 20x or 40x magnification.  

Assessment of islet viability. Islet viability was assessed as previously 

described [148] with some modifications. Briefly, islets were incubated in DPBS 

(Mediatech Inc., Manassas, VA) containing 4 µM calcein AM and 8 µM ethidium 

homodimer-1 (Molecular Probes, Eugene, OR) for one hour, and a representative 

number of individual islets (35-50) were imaged with two-channel confocal microscopy 

using a 20x objective as described above. Confocal micrographs were analyzed using 

MATLAB® (The MathWorks, Natick, MA) to quantify the number of pixels corresponding 

to fluorescent emission from live (green) and dead (red) cells.  Viability is expressed as 

the percentage of fluorescent pixels associated with emission from live cells.  

 Probes for detection of functional groups.  Biotinylated or fluorescently-

labeled probes were purchased or synthesized to detect islet surface hydrazide, biotin, 

azide, and aldehyde groups via confocal microscopy. Biotin groups were detected by 

incubating islets in Cy3-labeled streptavidin (Cy3-SA; Sigma Aldrich, St. Louis, MO) at 

0.1 mg/ml in DPBS for 30 minutes. To detect cell surface hydrazides, islets were 

incubated in fluorescently-labeled alginate-aldehyde (F-Alginate-CHO10), synthesized as 

described above, at 2 mg/ml in DPBS for 60 minutes at room temperature. For detection 

of aldehyde groups, islets were reacted with biotinamidohexanoic acid hydrazide 
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(hydrazide-LC-biotin; Pierce Biotechnology, Rockland, IL) at 5 mM for 1 hour at room 

temperature, followed by detection of biotin groups as described above.  

 To detect cell surface azide groups, islets were incubated with triarylphosphine-

poly(ethylene glycol)-biotin at 2mM in DPBS for 60 minutes at room temperature, 

followed by detection of biotin groups using Cy3-SA as described above. The 

triarylphosphine-poly(ethylene glycol)-biotin conjugate was synthesized by reaction of a 

heterobifunctional biotin-PEG3.4kD-amine linker (CreativePEGWorks, Winston Salem, 

NC) with a pentafluorophenyl (PFP) active ester of triarylphosphine, synthesized as 

described previously [398, 399].  To a stirred solution of biotin-PEG3.4kD-amine (100 mg, 

0.029 mmol) in DCM (2 ml) was added the PFP-ester of triarylphosphine (31.17 mg, 

0.058 mmol, 2 equiv) and Et3N (8.08 µl, 2 equiv.), and the resultant mixture stirred at 

room temperature for 12-16 h, upon which time volatiles were evaporated under 

vacuum.  The residue was dissolved in the minimum amount of cold DCM and the 

product was precipitated by cold ether.  The pure compound was collected by filtration 

and dried in vacuum. 1H NMR (400 MHz, CDCl3) δ:  1.45 (m, 2H), 1.6-1.8 (m, 4H), 2.2 (t, 

J = 7.6 Hz, 2H), 2.8 (d, J = 12.8 Hz, 1H), 2.9 (dd, J = 4.8, 12.8 Hz, 1H), 3.2 (m, 1H), 3.3-

3.9 (m, PEG), 3.7 (s, 1H), 4.3 (m, 1H), 4.5 (m, 1H), 6.7 (m, 2H), 7.2-7.4 (m, 11H), 7.8 

(dd, J = 1.6, 8.4 Hz, 1H), 8.1 (dd, J = 4, 8.4 Hz, 1H).  

 Quantification of immobilized streptavidin. Following biotinylation, islets were 

incubated in a 1:50 mixture (by mass) of horseradish perioxidase (HRP)-labeled 

streptavidin (HRP-SA; Zymed Laboratories, Inc., San Francisco, CA) and streptavidin 

(Pierce Biotechnology, Rockland, IL) at 0.1 mg/ml in DPBS for 30 minutes. After rinsing 

as described above, groups of 30-50 islets were placed into wells of a 96 well plate. The 

microplate was briefly centrifuged to settle islets, supernatant was removed, and 100 µL 

of 3,3´,5,5´-tetramethylbenzidine (TMB) solution (1-StepTM Ultra TMB-ELISA, Pierce 
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Biotechnology, Rockland, IL) was added to islets. Microwell plates containing islets and 

TMB were placed on a plate shaker (800 m-1, MS1 Minishaker, IKA, Wilmington, NC) at 

room temperature for 20 minutes, upon which time 50µL 2M H2SO4 was added to 

quench the reaction. Microwell plates were briefly centrifuged to settle islets, 100 µL of 

solution was transferred to a fresh well, and absorbance was recorded at 450 nm using 

a microplate reader. The amount of streptavidin immobilized on islets was quantified 

using a standard curve relating absorbance at 450 nm to known concentrations of 

soluble SA-HRP.  

 Statistics. Tests for statistical significance between the means of two groups 

were conducted with the Student’s t-test (two-tailed, homoscedastic). Tests between 

three or more groups were conducted with the one-way ANOVA followed by the Tukey 

HSD test.  

 

 
4.3. RESULTS AND DISCUSSION 
  
 Design of cytocompatible PLL12kD-g[x]-PEGn copolymers derivatized with 

ligands and reactive groups. As demonstrated in Chapter 3, the cytotoxicity of poly(L-

lysine)-g[x]-poly(ethylene glycol)methyl copolymers towards pancreatic islets can be 

attenuated through control of grafted PEG chain length and grafting ratio, x. In an 

analogous manner, PLL12kD-g[x]-PEG4(R) copolymers were synthesized, substituting the 

head group, R, of grafted PEG4 chains with a biotin, hydrazide, or azide functional group. 

Copolymers were synthesized with a grafting ratio, x, between 2.0 and 2.5, as required 

to abrogate the toxicity of copolymers synthesized using methyl-PEG4, yielding PLL12kD-

g[2.0-2.5]-PEG4(biotin) (P12P4(biotin)), PLL12kD-g[2.0-2.5]-PEG4(NHNH2), 

(P12P4(NHNH2)), and PLL12kD-g[2.0-2.5]-PEG4(N3) (P12P4(N3)) copolymers (Table 4.1). 
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To investigate the effect of PEG head group on PLL12kD-g[2.0-2.5]-PEG4(R) copolymer 

toxicity, islets were incubated in copolymers at 1 mg/ml for 40 minutes in serum free 

RPMI 1640, and islet viability was assessed and via calcein AM and ethidium 

homodimer staining and subsequent quantification with image analysis (Figure 4.1); 

untreated islets served as controls. Copolymers bearing PEG chains functionalized with 

biotin moieties (P12P4(biotin)) and hydrazide groups (P12P4(NHNH2)) were found to 

exert no discernable toxicity relative to non-treated controls or copolymers bearing 

methyl groups (p>0.05). By contrast, despite a similar grafting ratio, P12P4(N3) resulted 

in a significant decrease (p>0.05) in islet viability relative to both controls and other 

copolymers. It should be noted that while the azide anion (e.g., NaN3) is highly cytotoxic, 

organic azides have no intrinsic toxicity [374]. At a given grafting ratio, increasing the 

length of grafted PEG chains has been shown to reduce copolymer toxicity (Chapter 3), 

and, therefore, an azide-functionalized variant was synthesized using PEG12 grafts at a 

grafting ratio of 2.5 (P12P12(N3)). At the same molar concentration, P12P12(N3) was 

significantly less toxic than P12P4(N3) (p<0.01; Figure 4.1B-D), yielding islet viabilities 

statistically comparable to untreated controls (p>0.05), and further demonstrating the 

importance of PEG chain length in the toxicity of PLL-g-PEG copolymers. Hence, 

cytocompatible PLL12kD-g[x]-PEGn(R) copolymers bearing biotin, hydrazide, and azide 

functional groups may be generated through proper control of PEG chain length and 

grafting ratio.  

 The increased toxicity associated with P12P4(N3) relative to comparable 

polymers bearing methyl, biotin, or hydrazide suggests a potential dependence of 

copolymer toxicity on the chemical nature of the PEG head group, R. The dependence 

of copolymer toxicity on both the presence of grafted PEG chains as well as chain length 

(Chapter 3) suggests a role for PEG in dictating interactions between the polymer and 

the cell membrane, an effect which may be further influenced by the identity of PEG 
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head group. Indeed, the cytotoxicity and plasma membrane translocation potential of 

poly(L-lysine)-based branched polypeptides has been shown to be dependent not only 

the charge of the peptide, but also on branch length and amino acid composition [333, 

334, 400]. For example, substitution of serine for leucine in an otherwise similar 

polypeptide is associated with a significant decrease in cytotoxicity [333].  Similarly, 

increasing the hydrophobicity of random copolymers of lysine and phenylalanine [335], 

as well as other cell-penetrating peptides, increases interactions between the polymer 

and lipid tails within the plasma membrane, promoting penetration into the cell 

membrane [332] and attendant decreases in cell viability [267]. While not necessarily 

linked to differences in hydrophobicity per se, termination of grafted PEG4 chains with 

azido groups may influence copolymer-membrane interactions, partially overriding 

mechanisms through which grafted PEG attenuates toxicity. Increasing PEG chain 

length, and hence the relative mole fraction of PEG, appears to at least partially 

supersede adverse effects of the azido group. Further investigations comparing the 

cytotoxicity of copolymers comprised of various functional groups, grafting ratios, and 

PEG chain lengths are necessary to confirm these suppositions.  
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Figure 4.1.  Cytocompatible PLL12kD-g[x]-PEGn(R) copolymers bearing biotin, hydrazide, 
and azido functional groups may be generated through proper control of grafting ratio 
and PEG chain length. (A) Islet viability after 40 m incubation with functionalized 
copolymers synthesized with PEG4 and a grafting ratio, x, between 2.0 and 2.5. 
Copolymers containing hydrazide and biotin PEG head groups, R, had no discernable 
effect on islet viability relative to untreated controls or copolymers bearing methyl R 
groups (p>0.05). An azido-functionalized variant, however, induced a significant 
reduction (p<0.01) in islet viability (A,C). Increasing the length of PEG spacer from 4 to 
12 repeat units significantly (p<0.05) increased islet viability to levels statistically similar 
to controls as well as other functionalized polymers (B, D). Bars labeled with the letter a 
are statistically different (p<0.01) from all other bars as well as untreated controls. Scale 
bars in C,D are 50 µm. 
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 Generation of functional groups on the islet surface through adsorption of 

PLL-g[x]-PEG copolymers. Non-toxic PLLM-g[x]-PEGn(CH3) copolymers adsorb to the 

extracellular surface of pancreatic islets (Chapter 3), and, therefore, variants 

functionalized with ligands or reactive groups may offer a facile approach to re-

engineering the surface of living cells and tissues in a non-covalent manner (Scheme 

4.1). To explore this possibility, islets were incubated with hydrazide, azido, and biotin 

functionalized copolymers rendered non-toxic through control of appropriate structural 

variables as described above. After 40 minute incubation at 1 mg/ml, islets were washed 

to remove non-adsorbed copolymer and incubated with appropriate fluorescent probe(s) 

to detect functional groups on the islet surface via confocal microscopy (Figure 4.2). As 

a control, islets were incubated in copolymers synthesized using methyl-PEG4 (R=CH3) 

with a grafting ratio of 2.5 (P12P4(CH3)) prior to incubation with various probe(s).  

 Aldehydes undergo chemoselective ligation with hydrazides to form stable N-acyl 

hydrazones [384]. Fluorescein-labeled alginate oxidized to generate to aldehyde groups 

on approximately 10% of monomer repeat units (F-Alginate-CHO10) was used as probe 

for detecting islet surface hydrazide groups introduced upon incubation with 

P12P4(NHNH2). Confocal microscopy revealed a substantial increase in fluorescence 

intensity associated with islets incubated with P12P4(NHNH2) relative to those incubated 

with P12P4(CH3), indicating specific immobilization of F-Alginate-CHO10 through 

covalent reaction with islet-surface hydrazide groups (Figure 4.2).  Additionally, the 

observed difference in fluorescent intensity suggests that covalent interaction between 

hydrazides and aldehydes yields considerably more alginate-CHO10 deposition than 

electrostatic interactions between positively charged lysine residues of the copolymer 

and carboxylic acid groups of alginate-CHO10. Similarly, these results indicate that Schiff 

base formation between aldehyde groups on alginate and lysine residues on the 

polycation or naturally occurring on the cell surface does not favor formation of the imine 
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product [374]. Hence, PLL12kD-g[x]-PEG4(NHNH2) copolymers can be used to introduce 

hydrazide groups to the surface of living cells and tissues, providing a facile approach for 

immobilizing aldehyde-bearing molecules.  

 Though chemoselective coupling using hydrazides is a commonly employed 

strategy for modifying cell and tissue surfaces, aldehydes and ketones, generated 

chemically, metabolically, or enzymatically, serve as the reactive anchor on the cell 

surface [365, 371, 381, 401-405]. By contrast, to the author’s knowledge, there are no 

reports describing the generation of reactive cell surface hydrazide groups. This may be 

due, in part, to difficulty associated with covalently linking hydrazide-functionalized 

molecules to reactive groups naturally presented by cells. As a notable example, N-

hydroxysuccinimide (NHS) esters, commonly used for linking molecules to cell surface 

amines [13, 157, 227, 236], react with hydrazides as well, preventing hydrazide 

immobilization in this manner. Use of a polymeric carrier for hydrazide groups, in this 

instance PLL-g-PEG, circumvents such limitations. Significantly, as aldehydes and 

ketones can be readily introduced into oligosaccharides and glycoconjugates [374, 376, 

384], hydrazides may offer a unique and versatile handle for engineering cell surface 

glycosylation.  

 Perhaps more well known for their role as participants in “click” reactions [406], 

organic azides also undergo chemoselective ligation with triarylphosphine under 

physiological conditions via Staudinger ligation [370, 398]. Therefore, to probe for cell 

surface azido groups generated upon adsorption of P12P12(N3), islets were incubated 

with triarylphosphine-derivatized poly(ethylene glycol)biotin (phos-PEG-biotin; 2 mM, 1 

h), followed by subsequent biotin detection using Cy3-labeled streptavidin (Cy3-SA; 0.1 

mg/ml, 30 m). As demonstrated in Figure 4.2, an increase in fluorescence intensity was 

observed for islets incubated with P12P12(N3) relative to controls, though differences 

were more difficult to detect in this instance due to non-specific interaction of the 
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phosphine probe with controls. Fluorescent emission from controls, however, was 

sporadic and concentrated in discrete domains, whereas islets incubated with 

P12P12(N3) demonstrated a pattern of fluorescence consistent with both the 

extracellular architecture of isolated islets as well as the previously observed pattern of 

PLL-g-PEG copolymer deposition (Chapter 3). Collectively, these observations indicate 

that cell surface azides may be generated through adsorption of P12P12(N3) and used 

to immobilize macromolecules via Staudinger ligation.  

 With the advent of the modified Staudinger reaction [398] and more recent 

developments in copper-free cycloadditions [385, 386], organic azides have emerged as 

arguably the most versatile and chemoselective reactive handles for cell surface 

engineering.  Cell surface azide groups have been most commonly generated through 

metabolic oligosaccharide engineering [370, 407]. Azide groups on cell-surface glycans 

in both cultured cells [370, 408] as well as in whole [375, 386] or developing [378] 

organisms have proven to be valuable tools for investigating a number of fundamental 

questions in glycobiology. While also an attractive method for cell surface engineering 

[370, 375], biosynthetic incorporation of azides within glycoconjugates requires 

metabolism of a synthetic azidosugar, a process which may require several days [370].  

By contrast, azide-functionalized PLL-g-PEG copolymers facilitate presentation of cell 

surface azido groups within minutes, providing a facile and rapid alternative for 

chemically targeting cell surfaces via Staudinger ligation.   

 Biotinylation has long been employed as a facile strategy for linking molecules to 

cell surfaces via (strept)avidin-biotin interactions [227, 236] and, towards this end, a 

biotin functionalized PLL12kD-g[x]-PEG4(biotin) copolymer (P12P4(biotin)) was 

synthesized. In accord with previous studies using a similar bioconjugate  (PPB, Chapter 

2) [303], incubation of islets with P12P4(biotin) facilitated the specific immobilization of 

Cy3-labeled streptavidin to the islet surface (Figure 4.2).  
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 Cell surface biotinylation has most commonly been achieved using amine-

reactive NHS-esters [227, 236, 409]. To compare islet biotinylation achieved through 

covalent modification of amine groups and adsorption of biotin-derivatized PLL-g-PEG 

copolymers, islets were incubated with either NHS-PEG4(biotin) or P12P4(biotin) at 

equimolar concentration of biotin (1.4 mM in DPBS) for one hour, and the amount of 

immobilized streptavidin measured. Both strategies yielded comparable densities of 

streptavidin on the islet surface (Figure 4.3A). However, islets treated with the NHS-

ester reagent presented an altered morphology, characterized by more frequent cellular 

protusions, resulting in a more irregular periphery (Figure 4.3B).  By contrast, islets 

incubated with P12P4(biotin) maintained the smooth border characteristic of isolated and 

cultured murine islets (Figure 4.3C). While such morphological changes are not well 

understood, it is reasonable to suspect that cell-cell and cell-matrix adhesive interactions 

essential for maintenance of islet integrity [410-412] may be compromised by covalent 

modification of proteins [157]. Moreover, as a tetrameric protein capable of binding four 

biotin molecules, streptavidin may act to effectively crosslink biotinylated cell surface 

molecules [413, 414], potentially triggering undesired signaling pathways. Cell and tissue 

biotinylation using PLL-g-PEG copolymers may circumvent such undesired 

consequences.  

 For obvious reasons, cell surface modification using NHS-esters must be 

performed in amine-free solvents, limiting the potential applicability of this approach to 

situations in which cells and tissues can be isolated from amine-containing environments 

(e.g., culture or in vivo). While levels of streptavidin incorporation were not quantified, 

confocal microscopy demonstrated that islets incubated with P12P4(biotin) in a complex, 

amine-containing media, RPMI 1640, were capable of specifically binding Cy3-labeled 

streptavidin. Moreover, given the short half-life of NHS-esters in aqueous solvents at 

physiological pH [415], PLL-g-PEG copolymers functionalized with reactive groups offer 
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increased flexibility, as polymers may be dissolved well in advance of application, used 

repeatedly or repurified, or used in situations where prolonged exposure to the polymer 

may be necessary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Scheme 4.1.  Cell surface engineering using functionalized PLL-g-PEG copolymers. 
Adsorption of PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide 
moieties facilitates selective capture of streptavidin-, triphenylphosphine-, and 
aldehyde(CHO)-labeled probes, respectively, on the islet surface. 
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Figure 4.2. PLL12kD-g[x]-PEGn(R) copolymers can be used to generate functional groups 
on the islet surface. Islets were incubated with hydrazide (NHNH2), azide (N3), or biotin 
functionalized copolymers, and appropriate biotinylated or fluorescently-labeled probes 
were used to detect functional groups via confocal microscopy. Hydrazide groups were 
detected using fluorescein-labeled alginate oxidized to contain aldehyde groups on 
approximately 10% of monomer repeat units (F-Alginate-CHO10). Cell surface azides 
were detected using a triphenylphosphine-PEG3.4kD-biotin conjugate (Phos-PEG-biotin). 
Biotin groups were detected with Cy3-labeled streptavidin (Cy3-SA). Copolymers 
synthesized using methyl-PEG4 (R=CH3) with a grafting ratio of 2.5 (P12P4(CH3)) were 
used as controls. Representative confocal micrographs are shown; scale bar = 50 µm.  
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Figure 4.3. PLL12kD-g[2.0-2.5]-PEG4(biotin) copolymers provide an alternative to NHS-
ester functionalized biotinylation reagents. At equimolar biotin concentration NHS-
PEG4(biotin) (black bar) and P12P4(biotin) (white bar) immobilized comparable (p>0.05) 
amounts of streptavidin (A). However, Islets treated with NHS-PEG4(biotin) presented an 
irregular morphology (B), whereas islets incubated with P12P4(biotin) (C) maintained the 
smooth border characteristic of isolated and cultured murine islets. Scale bar = 50 µm. 
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 Co-presentation of functional groups using PLL-g[x]-PEG copolymers. 

Through sequential or co-adsorption of functionalized PLL12kD-g[x]-PEGn(R) copolymers 

on cell surfaces, multiple reactive groups may be displayed simultaneously. To 

demonstrate this possibility, islets were incubated in a solution of P12P4(biotin) and 

P12P4(hydrazide), each at 0.5 mg/ml in RPMI 1640, for 40 minutes. Upon rinsing away 

non-adsorbed copolymer, islets were incubated with either Cy3-SA, F-Alginate-CHO10, 

or a mixture of the two probes. As demonstrated in Figure 4.4, islets incubated with a 

mixture of biotin- and hydrazide-functionalized copolymers were capable of capturing 

individual probes as well as both probes in combination, clearly demonstrating 

simultaneous display of both biotin and hydrazide moieties on the islet surface. In 

principle, a library of copolymers bearing a diverse array of functional groups, potentially 

including peptides, oligosaccharides, nucleic acids, and other bioorthogonally reactive 

groups, could be synthesized and used combinatorially to obtain exquisite control over 

the molecular landscape of living cells and tissues. Further exploration of this concept is 

an area of ongoing investigation. 
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Figure 4.4. Biotin and hydrazide groups may be simultaneously displayed through co-
adsorption of functionalized PLL-g-PEG copolymers. Islets were incubated in a mixture 
of P12P4(biotin) and P12P4(hydrazide), and subsequently incubated with F-Alginate-
CHO10 (top panel), Cy3-SA (middle panel), or a mixture of the two (bottom panel). Two-
channel confocal microscopy was used to detect Cy3 (left panel) and flourescein (right 
panel). Representative confocal micrographs demonstrate simultaneous display of both 
biotin and hydrazide moieties on the islets surface. Scale bar = 50 µm.  
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 Islet surface engineering using cytocompatible polyelectrolyte multilayer 

thin films. Polyelectrolyte multilayer (PEM) films can be assembled on the surface of 

viable pancreatic islets through layer-by-layer deposition of PLL12-g[2.5]-PEG4(CH3) and 

alginate (Chapter 3), offering an additional opportunity for cell surface engineering 

through incorporation of functionalized film constituents.  As a demonstration of this 

concept, a modified polyanion, alginate-CHO10, was used in film formation. To 

demonstrate growth of this PEM film on islets, films were assembled using 

P12P4[2.5](CH3) as the polycation and fluorescein-labeled alginate-CHO10 (F-Alginate-

CHO10). Confocal microscopy was used to detect F-Alginate-CHO10 on the islet surface 

and qualitatively compare relative differences in fluorescent intensities between islets 

coated with a single bilayer, eight bilayers, or incubated with F-Alginate-CHO10 for an 

equivalent amount of time. As shown in Figure 4.5A, after fabrication of eight bilayers 

fluorescent emission from F-Alginate-CHO10 was observed surrounding the islet 

periphery. By contrast, islets treated with a single bilayer (Figure 4.5B) or only with F-

Alginate-CHO10 (Figure 4.5C) demonstrated essentially no fluorescent emission, 

indicating assembly of PEM films containing oxidized alginate on the islet surface. To 

demonstrate the presence and reactivity of newly introduced aldehyde groups, islets 

coated with an eight bilayer P12P4[2.5]/F-Alginate-CHO10 film were subsequently 

incubated with biotinamidohexanoic acid hydrazide (NHNH2-biotin) at 5 mM in DPBS for 

1 hour, and biotin groups detected using Cy3-SA and confocal microscopy. As shown in 

Figure 4.6A, fluorescent emission associated with Cy3-SA (right panel) is observed on 

the islet surface and largely colocalized with F-Alginate-CHO10 (left panel). Incubation of 

coated islets with Cy3-SA demonstrated no or only sporadic fluorescent emission 

(Figure 4.6B), indicating that amines within streptavidin do not form stable imines via 

Schiff base formation with aldehyde groups within PEM films. Additionally, islets 

incubated only with F-Alginate-CHO10 and subsequently with biotin-NHNH2 and Cy3-SA 
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(Figure 4.6C) demonstrated no or sporadic fluorescent emission (Figure 12D), indicating 

that biotin is immobilized in an aldehyde-specific manner. Interestingly, aldehyde groups 

remained reactive despite assembly of films in amine-containing solvent (RPMI 1640), 

again indicating that Schiff base formation between soluble amines and aldehyde groups 

on alginate-CHO10 is highly reversible under these conditions [374]. 

 In addition to serving as a polymeric carrier for reactive groups, incorporation of 

negatively charged polysaccharides into thin films may provide an opportunity to 

introduce glycosylation patterns that generate desired biochemical or cellular responses. 

For example, synthetic oligosaccharides designed to mimic L-selectin ligands have been 

shown to downregulate L-selectin expression on inflammatory cells through multivalent 

interactions with the receptor [416-418], and, as an anionic polymer, may be included 

into films to attenuate inflammatory responses to islet grafts [52, 286]. Likewise, heparin 

could be employed as the polyanion [419, 420], potentially attenuating thrombogenic 

responses initiated by transplanted islets in contact with whole blood [54, 286]. 

Additionally, as they are generally non-toxic, other natural or synthetic polyanions may 

be utilized to confer bioactivity to the cell surface. Notably, use of DNA and other nucleic 

acid polymers as film components [421], may provide unique opportunities for cell 

surface-mediated gene delivery to islets or surrounding host cells post-transplantation.  

 Though not explicitly explored, PEM films may also be generated using 

functionalized, cytocompatible polycations, such as those discussed above, further 

expanding the repertoire of functional groups that may be incorporated and the versatility 

of the approach. Spatial distribution of functional groups might be controlled through 

incorporation of constituents at different points during the film formation process [422-

424], providing an opportunity to tailor the phyioschemical and biochemical properties of 

cell surface-supported films. For example, through alternating deposition of constituents 

bearing orthogonally reactive groups, such as P12P4(NHNH2) and alginate-CHO10, films 
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capable of crosslinking in situ might be generated [397, 425, 426] potentially enhancing 

stability or facilitating control of film permeability. Previous reports indicate that the 

density of molecules covalently linked to cell surface amines [287] and aldehydes [401] 

is dramatically reduced within days, due, in part, to turnover and shedding or membrane 

proteins and carbohydrates [158]. Though the stability of adsorbed copolymers and 

assembled PEM films was not explored herein, electrostatically and/or covalently 

crosslinked nanostructures non-specifically anchored to the cell surface may be more 

resistant to such mechanisms of instability. Additionally, through proper choice of film 

constituents or crosslinking strategies, functionalized polymers or embedded agents may 

be released from films in a controlled manner [427-430], providing further opportunities 

for controlling the local biochemical environment and directing cellular responses. 

 

 

 

 

 

 

 

 

Figure 4.5. Polyelectrolyte multilayer (PEM) films can be assembled on individual 
pancreatic islets through layer-by-layer deposition of PLL12kD-g[2.5]-PEG4(CH3) and 
oxidized alginate. Using fluorescein-labeled alginate oxidized to contain aldehyde groups 
on approximately 10% of monomer repeat units (F-Alginate-CHO10) as the polyanion, 
confocal micrographs of coated islets reveal dramatic differences in fluorescent intensity 
associated with films comprised of eight bilayers (A) and a single bilayer (B). Controls 
treated only with F-Alginate-CHO10 (C) demonstrate little or no fluorescence, indicating 
that alginate-CHO10 deposition is polycation-dependent. 
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Figure 4.6. Cell surface-supported PEM films assembled using oxidized alginate 
facilitate presention of reactive aldehydes. (A) Islets coated with an eight bilayer 
P12P4[2.5]/F-Alg-CHO10 film (left panel) were reacted with hydrazide-LC-biotin (NHNH2-
biotin) and biotin groups detected using Cy3-SA and confocal microscopy (right panel). 
(B) Incubation of coated islets (left panel) with only Cy3-SA (right panel) demonstrated 
no or only sporadic fluorescent emission, indicating that streptavidin is not incorporated 
via Schiff base formation with aldehyde groups. (C) Islets incubated only with F-Alg-
CHO10 (left panel) and subsequently with biotin-NHNH2 and Cy3-SA (right panel) 
demonstrated no or sporadic fluorescent emission indicating that biotin is introduced in 
an aldehyde-specific manner.  
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4.4. CONCLUSIONS 

 Cell surface engineering has emerged as a powerful tool for landscaping the 

molecular interface of viable cells and tissue with potential applications in biosensing, 

tissue engineering, drug delivery, and cell-based therapeutics.  Using cytocompatible 

PLL-g-PEG copolymers, and polyelectrolyte multilayer films assembled thereof, biotin, 

azide, hydrazide, and aldehyde groups could be displayed on extracellular surface of 

islets, either alone or in combination, and used to capture bio- or chemically orthogonal 

probes.  In this regard, functionalized PLL-g-PEG copolymers may be used as modular 

design elements for remodeling the surface of pancreatic islets in a noncovalent manner.  

While specific biomedical and biotechnological applications of this work have yet to be 

fully identified, cell surface-supported PLL-g-PEG monolayers and PEM films offer a 

platform technology for cell and tissue surface engineering.  
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CHAPTER 5 

Surface Re-engineering of Pancreatic Islets with Thrombomodulin  

 

5.1. INTRODUCTION 

With the inception of the Edmonton Protocol, intraportal islet transplantation has 

re-emerged as a promising cell-based therapy for type 1 diabetes [17-19]. However, 

despite the promise of islet transplantation, primary nonfunction and early nonimmune 

islet destruction, which have been observed both in animal models and in clinical trials, 

remain major hurdles in islet transplantation [431].  Notably, islets from two to four donor 

organs are typically required to reverse diabetes in a single patient, placing a significant 

burden on an already limited donor organ supply [12, 18, 20-23, 432].  Moreover, a 

requirement for successive islet infusions within the portal bed necessitates re-

interventions with increased costs, the attendant risk of periprocedural morbidity, and 

has been associated with increasing portal vein pressures that may indicate the 

development of a presinusoidal form of portal hypertension [433, 434].  Early islet 

destruction in the immediate post-transplant period may be the consequence of poor 

functional quality of the grafted tissue, delayed and insufficient revascularization of the 

graft [41], glucose and lipotoxicity [43, 44], or ischemia-reperfusion injury [42]. However, 

substantial evidence now suggests that exposure to an early, nonimmune inflammatory 

injury is largely responsible for the observed functional stunning or destruction of islets 

and may well amplify subsequent immune reactions [37, 45-50, 435-437].  

Although activation of the graft microenvironment by proinflammatory mediators 

released from islet grafts contribute to induction of a local inflammatory response [1, 36, 

52, 70-81], recent evidence indicates that an acute blood mediated inflammatory 

reaction is initiated upon intraportal infusion of islets [3, 54-56].  Korsgren and 
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colleagues have demonstrated that tissue factor (TF), the primary physiological initiator 

of the coagulation system [57], is expressed by and released from β and α cells of 

isolated islets [55].  Indeed, in animal models and in recent clinical reports, marked 

activation of coagulation has been noted shortly after islet infusion, despite the presence 

of heparin in the infusate, as indicated by increases in thrombin–antithrombin (TAT) 

complexes, prothrombin activation fragments, and fibrinopeptide A   [56, 60].  Notably, 

thrombin is a direct mediator of inflammation [61], acting as a chemoattractant for 

neutrophils and monocytes and stimulating endothelial cells to express monocyte 

chemoattractant protein-1 (MCP-1) and other chemokines [64].  Thrombin also induces 

endothelial cell expression of ICAM-1, VCAM-1, E- and P-selectin, as well as platelet 

activating factor, all of which leads to further recruitment of platelets and leukocytes to 

the graft site [61, 63, 438].  Likewise, by-products of the thrombin response, including 

fibrinogen degradation products and fibrin, also act as chemoattractants and serve to 

localize this inflammatory response by adhesion-dependent processes.  Furthermore, 

thrombin activated leukocytes express oxygen free radicals, IL-1β, TNF-α, IFN-γ, and 

iNOS [62], which can damage islets, inducing either functional impairment or death   [49, 

51, 52].  Consistent with these observations, immunohistochemical analysis of grafts 

with primary nonfunction has demonstrated robust infiltration of macrophages and 

neutrophils [37, 46, 52]. 

Under normal physiological conditions, endothelial cells lining the extensive 

microvasculature of pancreatic islets actively regulate coagulation [1]. During islet 

isolation and culture, however, this barrier is disrupted [1, 2], exposing procoagulant and 

inflammatory mediators while simultaneously stripping away EC-derived regulators of 

thrombosis including heparin, CD39, and thrombomodulin (TM). TM, a 60 kD type I 

transmembrane protein, is the most important physiological regulator of coagulation in 
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the microcirculation, and acts as an important link between coagulation and inflammation 

[439].  TM forms a 1:1 molar complex with thrombin and exerts pronounced inhibitory 

effect on thrombotic, inflammatory, and redox related responses initiated in response to 

thrombin generation [440-444].  TM binds thrombin and switches off all of its known 

procoagulant/proinflammatory functions, channeling the catalytic power of the enzyme 

into complex anticoagulant/anti-inflammatory activities.  Specifically, thrombin bound to 

TM is no longer capable of cleaving fibrinogen, nor is it able to activate factor V or 

platelets [445].  It is particularly noteworthy, however, that TM significantly enhances the 

rate of thrombin inactivation by ATIII (~8-fold) and dramatically accelerates (~20,000-

fold) the ability of thrombin to activate protein C (APC).  APC directly inhibits generation 

of factors VIIIa and Va, thereby further abrogating thrombin generation [439, 446].  

Significantly, APC has also been shown to possess potent, coagulation-independent 

anti-inflammatory activity [439, 447], inhibiting macrophage production of 

proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) [448-452], endothelial cell 

expression of E-selectin and ICAM-1 [453, 454], and neutrophil binding to selectins 

[455]. 

 Given these observations, we have postulated that administration of TM 

represents a rational strategy for inhibiting pernicious thrombotic and inflammatory 

processes that underlie early islet destruction. Specifically, through immobilization of 

exogenous TM to the islet surface, high local concentrations of APC may be 

continuously generated, so long as thrombin is present.  Towards this objective, we have 

developed a strategy for biotinylating recombinant human TM (rTM) in a site-specific 

manner, facilitating its immobilization to the islet surface through well-established biotin-

avidin interactions. Moreover, in an effort to maximize surface presentation of rTM, 

unique covalent islet surface modification techniques were employed with broad 

implications for chemical remodeling of islets. Finally, through optimization of islet 
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surface biotinylation and subsequent immobilization of rTM, rates of APC generation 

were significantly increased.   

 

 
5.2.  MATERIALS AND METHODS 
 
 Animals.  Male C57BL/6J (B6), and B10.BR-H2k H2-T18a/SgSnJ (B10) mice (8 

weeks old, Jackson Laboratory Bar Harbor, ME) were used as islet donors. All animal 

studies followed local Institutional Animal Care and Use Committee guidelines at Emory 

University.   

 Islet isolation.  Murine islets. Pancreatic islet isolations were performed, as 

previously described [264]. B10 or B6 mice (8 weeks old, Jackson Laboratory Bar 

Harbor, ME) pancreata were removed after distension with collagenase P (1 mg/ml, 

Roche, Indianapolis, IN) through the common bile duct. Following digestion, islets were 

purified by a Ficoll-Histopaque discontinuous gradient (Ficoll: 1.108, 1.096, and 1.037; 

Mediatech Inc., Manassas, VA).  Isolated islets were cultured for 48-72 hours at 37°C in 

RPMI 1640 supplemented with 10% heat inactivated fetal calf serum, L-glutamine (2 

mM), penicillin (100 U/ml), streptomycin (100 µg/ml) and amphotericin B (0.25 µg/ml) 

(Mediatech Inc.), and media was changed daily. Human islets. Human islets were 

provided by the Cell and Tissue Processing Laboratory in the Emory University 

Transplantation Center or obtained from an Islet Cell Resource Center, and cultured 24-

72 hours in Miami Medium #1A (Mediatech Inc.) prior to use.  

 Detection of murine tissue factor. Two-hundred murine (B10) islets were 

resuspended in homogenization buffer (50 mM Tris-HCl, pH 7.5, 200 mM NaCl, 0.02% 

Brij-35, 0.5% Triton X-100, 0.1 mM PMSF).  Islet tissue was disrupted using a motorized 

pellet pestle, and samples were clarified with centrifugation.  Murine lung tissue was 
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harvested as a positive control.  Lung tissue was resuspended in homogenization buffer 

and processed with a PowerGen homogenizer; samples were clarified with 

centrifugation.  Total protein was quantified with the BCA protein assay kit (Pierce 

Biotechnology, Rockford, IL), and SDS-PAGE was performed according to Laemmli 

[456].  Western blot analysis was performed using rabbit anti-mouse tissue factor IgG 

(American Diagnostica Inc., Stamford, CT) and donkey anti-rabbit HRP (horseradish 

peroxidase) (GE Healthcare, Piscataway, NJ).  Bands were visualized [457] using the 

ECL plus Western blotting detection kit (GE Healthcare).   

 Measurement of thrombomodulin activity.  The cofactor activity of 

thrombomodulin (TM) on islets was determined by measuring the production of activated 

protein C (APC) in the presence of protein C, thrombin, and calcium. Groups of 40-50 

human or B6 murine islets were handpicked under a dissecting microscope, placed into 

wells of a 96 well plate containing 75 µl of 20mM Tris-HCI (pH 7.4) containing 1 µM 

human protein C (Calbiochem, San Diego, CA), 1 nM thrombin (Haematologic 

Technologies, Essex Junction, VT), 5 mM CaCl2, 100 mM NaCl2, and 0.1% (wt) BSA. 

After 1 h incubation at 37°C, production of APC was quenched for 5 minutes by the 

addition of 2 IU/ml antithrombin III (American Diagnostica, Stamford, CT).  Thirty 

microliter samples were collected and APC was detected by the addition of 0.5 mM 

Spectrozyme PCa (American Diagnostica). Absorbance measurements at 405 nm were 

recorded every 30 seconds for 40 minutes to determine the rate of chromogenic 

substrate conversion by APC. APC concentration was determined using a standard 

curve relating rates of chromogenic substrate conversion to known concentrations of 

APC (American Diagnostica) and normalized by islet number.  

Preparation of a liposomal formulation of thrombomodulin.  Large 

unilamellar vesicles (LUV) were prepared from a lipid solution of 12 mM 1-palmitoyl-2-
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oleoyl-sn-glycero-3-phosphocholine (POPC) (Avanti Polar Lipids, Inc., Alabaster, AL) in 

PBS (80 mM Na2HPO4, 20 mM NaH2PO4, 100 mM NaCl, pH 7.4) by four successive 

freeze/thaw/vortex cycles using liquid nitrogen and a 45°C water bath.  A total of 20 µg 

of rabbit thrombomodulin (TM; American Diagnostica, Stamford, CT) was added to 100 

µl of the lipid solution and mixed gently for 1 hour at room temperature before it was 

extruded 21 times, each through two back-to-back 600 nm and then 100 nm 

polycarbonate membranes (Whatman, UK) [457]. 

Tubing loop model of blood-islet interactions.  A tubing loop model of human 

blood- islet interactions was used to examine the effects of TM vesicle formulations [54, 

55].  Human islets (5000 IEQ) were suspended in 100 µl of either TM-containing vesicles 

or empty vesicles suspended in PBS.  Islets were transferred to loops comprised of 

heparin-bonded PVC tubing (6.3 mm ID, 40 mm length, Corline Systems, Uppsala, 

Sweden). Fresh human blood was obtained from healthy volunteers via venipuncture, 

and collected into heparin-bonded 60 ml syringes (Corline Systems).  A total of 7 ml of 

blood was transferred to each loop containing human islets at 5000 IEQ and TM at 700 

µg/ml, resulting in a final TM concentration of 10 µg/ml in each loop.  A loop containing 

human islets in 100 ml of PBS was run as a negative control. To simulate portal blood 

flow, loops were rocked at 37°C to generate a flow rate of approximately 45 ml/min.  

After 1 hour, sodium citrate was added to quench reactions and blood samples collected 

for analysis.  Platelet, white blood cell, and lymphocyte counts were determined using a 

Beckman Coulter ACT (Beckman Coulter Inc., Fullerton, CA). Commercially available 

ELISA kits were used to analyze plasma for levels of thrombin-antithrombin III 

(Enzygnost TAT, Dade Behring, Germany), β-thromboglobulin (Asserachrom, 

Diagnostica Stago, France), and prothrombin fragment 1+2 (Enzygnost F1+2, Dade 

Behring).  
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 Expression and purification of recombinant human azido-thrombomodulin. 

A DNA fragment encoding for EGF (4-6) domains of human TM was obtained by 

polymerase chain reaction (PCR) using the primers 5’-

GTGGAACCGGTTGACCCGTGCT-3’ and 5’-TTATTACATGCCACCGTCCACCTTGCC-

3’.  Site-directed mutagenesis was used to mutate the single internal methionine residue 

to leucine at position 388.  PCR was used to create a C-terminus GlyGlyMet coding 

region.  The final construct was inserted into the pFLAG ATS expression system (Sigma, 

St. Louis, MO) at HindIII.  TM was expressed in the E. coli methionine auxotroph B834 in 

minimal media supplemented with azido-functionalized methionine [458].  Recombinant 

TM was purified with immunoaffinity chromatography using anti-FLAG affinity gel (Sigma 

Aldrich).    

 Synthesis of biotin-PEG-triarylphosphine. A triarylphosphine-poly(ethylene 

glycol)-biotin conjugate was synthesized by reaction of a heterobifunctional biotin-

PEG3.4kD-amine linker (CreativePEGWorks, Winston Salem, NC) with a 

pentafluorophenyl (PFP) active ester of triarylphosphine, synthesized as described 

previously [398, 399].  To a stirred solution of biotin-PEG3.4kD-amine (100 mg, 0.029 

mmol) in DCM (2 ml) was added the PFP-ester of triarylphosphine (31.17 mg, 0.058 

mmol, 2 equiv) and Et3N (8.08 µl, 2 equiv.), and the resultant mixture stirred at room 

temperature for 12-16 h, upon which time volatiles were evaporated by vacuum.  The 

residue was dissolved in the minimum amount of cold DCM and the product was 

precipitated by cold ether.  The pure compound was collected by filtration and dried in 

vacuum. 1H NMR (400 MHz, CDCl3) δ:  1.45 (m, 2H), 1.6-1.8 (m, 4H), 2.2 (t, J = 7.6 Hz, 

2H), 2.8 (d, J = 12.8 Hz, 1H), 2.9 (dd, J = 4.8, 12.8 Hz, 1H), 3.2 (m, 1H), 3.3-3.9 (m, 

PEG), 3.7 (s, 1H), 4.3 (m, 1H), 4.5 (m, 1H), 6.7 (m, 2H), 7.2-7.4 (m, 11H), 7.8 (dd, J = 

1.6, 8.4 Hz, 1H), 8.1 (dd, J = 4, 8.4 Hz, 1H). 
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 Site-specific biotinylation of recombinant TM. Purified azido-functionalized 

TM was mixed with biotin-PEG-triarylphosphine (1:500 molar ratio) in PBS, and the 

reaction mixture incubated at 37°C for 48 hr (Scheme 5.1).  Conjugation was monitored 

using SDS-PAGE/Commassie total protein stain.  An approximate 4000 MW shift was 

observed upon reaction of TM with the biotin-PEG-triarylphosphine linker.  Excess linker 

was removed with Amicon ultrafiltration using a 10,000 MWCO filter (Millipore, Billerica, 

MA), with additional purification achieved through anti-FLAG chromatography to capture 

the TM.  The final desired TM-biotin product was obtained after monomeric avidin 

chromatography (Pierce Biotechnology, Rockland, IL).  Total protein was quantified with 

the Bradford protein assay (Bio-Rad, Hercules, CA).  Biotinylation was confirmed using 

the FluoReporter Biotin Quantitation Assay Kit (Molecular Probes, Eugene, OR). 

 Biotinylation of pancreatic islets. N-hydroxysuccinimide (NHS) esters and 

hydrazide-functionalized reagents were used to biotinylate cell surface amines and 

aldehydes, respectively (Scheme 5.2).  Prior to biotinylation, islets (<1000) were placed 

into 12 mm cell culture inserts with 12 µm pores (Millicell-PCF; Millipore, Billercia, MA), 

and washed six times by adding 700 µl of Dubelco’s phosphate buffered saline 

containing calcium and magnesium (DPBS) to the insert, followed by gentle repeated 

tapping of the insert on a polystyrene surface to facilitate drainage of the wash solution 

through pores while retaining islets. NHS-PEG3.4kD-biotin (Nektar Therapeutics, 

Huntsville, AL) or sulfosuccinimidyl-6-(biotinamido) hexanoate (sNHS-LC-biotin; Pierce 

Biotechnology, Rockland, IL) were used to biotinylate islet surface amine groups.  

Compounds were dissolved at the desired concentration in DPBS supplemented with 11 

mM glucose (DPBSG) and added to islets within 10 seconds of dissolution to minimize 

ester hydrolysis. Reactions were performed for one hour at room temperature, and islets 

were rinsed six times as described above to remove unreacted biotin. Islet surface 
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aldehyde groups were generated through periodate oxidation of cis-glycol groups. Islets 

were incubated in 1 mM sodium metaperiodate (NaIO4; Pierce Biotechnology) in DPBS 

protected from light for 15 minutes. Islets were then rinsed six times with DPBS, and 

subsequently incubated in biotinamidohexanoic acid hydrazide (hydrazide-LC-biotin; 

Pierce Biotechnology) at the desired concentration and reaction time. Islets were then 

rinsed six times to remove unreacted reagent.  

Assessment of islet viability. Islet viability was assessed as previously 

described [148] with some modifications. Briefly, a representative number (35-50) of 

islets were incubated in DPBS (Mediatech Inc., Manassas, VA) containing 4 µM calcein 

AM and 8  µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) for one hour, and 

individual islets were imaged with two-channel confocal microscopy  (Zeiss LSM 510 

META; Carl Zeiss, Inc., Thornwood, NY) using a 20x objective as described above. 

Confocal micrographs were analyzed using MATLAB® (The MathWorks, Natick, MA) to 

quantify the number of pixels corresponding to fluorescent emission from live (green) 

and dead (red) cells.  Viability is expressed as the percentage of fluorescent pixels 

associated with emission from live cells. 

 Quantification of immobilized streptavidin. Following biotinylation, islets were 

incubated in a 1:50 mixture (by mass) of HRP-labeled streptavidin (HRP-SA; Zymed 

Laboratories, Inc., San Francisco, CA) and streptavidin (Pierce Biotechnology, 

Rockland, IL) at 0.1 mg/ml in DPBSG for 30 minutes. After rinsing as described above, 

groups of 30-50 islets were placed into wells of a 96 well plate. The microplate was 

briefly centrifuged to settle islets, supernatant was removed, and 100 µL of 3,3´,5,5´-

tetramethylbenzidine (TMB) solution (1-StepTM Ultra TMB-ELISA, Pierce Biotechnology) 

was added to islets. Microwell plates containing islets and TMB were placed on a plate 
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shaker (800 m-1, MS1 Minishaker, IKA, Wilmington, NC) at room temperature for 20 

minutes, upon which time 50 µL 2M H2SO4 was added to quench the reaction. Microwell 

plates were briefly centrifuged to settle islets, 100 µL of solution was transferred to a 

fresh well, and absorbance was recorded at 450 nm using a microplate reader. The 

amount of streptavidin immobilized on islets was quantified using a standard curve 

relating absorbance at 450 nm to known concentrations of soluble SA-HRP.  

Immobilization of thrombomodulin on mouse islets.  Following biotinylation, 

islets were incubated with 0.1 mg/ml streptavidin (Pierce Biotechnology, Rockland, IL) in 

DPBSG for 30 minutes. Islets were washed with DPBSG six times as described above to 

remove free streptavidin. Islets were then incubated with the rTM-PEG3.4kD-biotin (rTM-

biotin) conjugate (3.5 µM in DPBSG) for one hour at room temperature. Islets were then 

washed eight times to remove free rTM-biotin prior to measuring TM activity.  

 Statistics. Tests for statistical significance between the means of two groups 

were conducted with the Student’s t-test (two-tailed, homoscedastic). Tests between 

three or more groups were conducted with the one-way ANOVA followed by the Tukey 

HSD test.  

 
 
5.3. RESULTS 
 

Co-expression of tissue factor and thrombomodulin by isolated pancreatic 

islets. Tissue factor (TF), the primary physiological initiator of the coagulation system 

[57], initiates the extrinsic arm of the coagulation pathway. Korsgren and colleagues 

have recently demonstrated that TF is expressed on the surface of α and β cells in both 

the intact human pancreas as well as isolated islets [55], and, consequently, is a key 

initiator of thrombosis and inflammation in intraportal islet transplantation. Accordingly, 
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tissue factor could also be detected on murine islets by immunoblotting (Figure 5.1A) as 

indicated by a clear band at 47 kD, corresponding to the molecular weight of tissue 

factor [55].  While expression patterns were not investigated, this finding corroborates 

previous findings demonstrating localized thrombosis in murine models of intraportal islet 

transplantation and lends credence to the use of such models [45].  

Iino et al. [459] have recently provided histological evidence supporting 

endogenous expression of thrombomodulin (TM) on islet endocrine cells within the intact 

pancreas, suggesting regulatory cross-talk between TF and TM under normal 

physiologic conditions. To determine if endogenous TM expression and activity persisted 

upon isolation of islets, the capacity of human islets to activate protein C in the presence 

of thrombin was investigated. As shown in Figure 5.1B, islets activated protein C (APC) 

at a rate of 0.24 ± 0.02 fmol/minute per islet; repeating the experiment in the absence of 

thrombin abrogated APC generation, indicating that the observed response was 

dependent on formation of the TM-thrombin complex. As demonstrated later (Figure 

5.5), murine islets generated APC to a comparable extent. Hence, isolated and cultured 

human and murine islets simultaneously express tissue factor and thrombomodulin. 
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Figure 5.1. Co-expression of tissue factor and thrombomodulin by isolated and cultured 
pancreatic islets. (A) Western blot of murine islet lysate using rabbit anti-mouse tissue 
factor IgG demonstrates a distinct band at approximately 47 kD, corresponding to the 
expected molecular weight of tissue factor. Murine lung homogenate served as a 
positive control. (B) Thrombin-dependent production of activated protein C (APC) by 
human islets indicates endogenous thrombomodulin activity.  

 

Liposomal formulations of TM inhibit islet-mediated coagulation.  A tubing 

loop model was used to investigate thrombotic reactions mediated by human islets in 

contact with fresh, non-anticoagulated whole human blood.  In accord with previous 

findings [54, 55], islets initiated a significant thrombotic response, characterized by 

thrombin generation and platelet activation (Table 5.1).  The presence of islets resulted 

in a ~500 fold increase in thrombin-antithrombin III (TAT) production relative to control 

loops without islets. Similarly, levels of prothrombin fragment 1+2 were elevated nearly 

200 fold in the presence of islets. Additionally, islet-blood contact induced significant 

platelet activation, as evidenced by a significant increase (p < 0.01) in the release of β-

thromboglobulin (β-TG) and platelet consumption. Moreover, lymphocyte and white cell 

counts were also reduced due to entrainment of cells in large thrombi that formed in 

loops containing islets. Hence, islets initiate a significant thrombotic response despite 

expression of endogenous TM and an attendant ability to generate APC suggesting an 

imbalance in the expression levels of TM and TF. 
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In light of these findings, the potential efficacy of TM as an inhibitor of islet-

mediated thrombosis was investigated.  Incorporation of TM within a lipid bilayer 

significantly increases the catalytic efficiency of protein C activation [460]; as the 

objective of this experiment was to demonstrate the potential efficacy of TM a liposomal 

formulation of TM (lipo-TM) was used.  Addition of lipo-TM reduced TAT levels by 98%, 

though TAT levels remained statistically higher than control loops (p < 0.01).  Lipo-TM 

reduced levels of prothrombin fragment 1+2 by 95% to levels statistically similar to 

control loops (p > 0.01), decreased β-TG levels approximately three-fold, and 

significantly increased platelet count (p < 0.01). Finally, addition of lipo-TM inhibited 

thrombus formation, thereby, limiting changes in lymphocyte and white blood cell counts. 

These studies demonstrate the therapeutic potential of thrombomodulin as an inhibitor of 

islet-initiated thrombosis, and provide motivation for increasing the surface density of TM 

on the surface of pancreatic islets. 

 

 

 
Table 5.1. Thrombotic activity of human islets in the presence or absence of TM liposomes 
        0 min 60 min 

Islets 

          Control    TM Vesicles   Empty Vesicles
Platelets (x103/µl) 270 ± 84 230 ± 52 160 ± 45† 3.3 ± 0.91‡

White blood cells (103/µl) 8.5 ± 2.7 8.1 ± 2.5 7.8 ± 2.3 3.6 ± 1.4

Lymphocytes (103/µl) 2.2 ± 0.10 2.5 ± 0.05 2.5 ± 0.06 1.6 ± 0.54

Thrombin-antithrombin III (µg/l) 29 ± 10 67 ± 12 650 ± 140† 33,000 ± 6,800‡

β-thromboglobulin (IU/ml) 390 ± 350 1,000 ± 100 3,200 ± 1,300 9,300 ± 780‡

Prothrombin F1+2 (pmol/l) 270 ± 95 320 ± 39 3,000 ± 1,700 59,000 ± 17,000‡

Data are n, mean ± standard deviation.  
Control loops contained blood and PBS loading solution, but no islets. 
†Significant difference (p<0.01) when compared with the control loop. 
‡Significant difference (p<0.01) when compared with loops containing islets and TM-vesicles 
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Site-specific biotinylation of recombinant human thrombomodulin. 

Immobilization of exogenous TM on the islet surface provides a rational approach to 

increasing local concentrations of APC at the site of transplantation. Towards this 

objective, a biotinylated TM was generated to facilitate immobilization on the islet 

surface via well-established biotin-(strept)avidin interactions. Though TM activity is 

maximized when inserted into a phospholipid bilayer [460], it is well established that the 

extracellular EGF-like domains 4-6 of human TM exhibit full cofactor activity [461]. 

Hence, a biosynthetic approach was used to generate recombinant human TM (rTM) 

containing these domains, as well as a non canonical, C-terminal azido-methionine 

analog (rTM-N3) [462, 463]. Site-specific biotinylation was achieved through 

chemoselective Staudinger ligation between triphenylphosphine-derivatized 

poly(ethylene glycol)-biotin and the C-terminal azide of rTM-N3 (Scheme 5.1).  Upon 

reaction, SDS-PAGE of the crude mixture demonstrated the presence of two species 

separated by approximately 4 kD, corresponding to the desired conjugate (TM-PEG-

biotin) and unreacted rTM-N3 (Figure 5.2A).  By contrast, only a single band was 

observed when rTM bearing a C-terminal methionine was used, demonstrating the 

specificity of the conjugation reaction. Densitometry indicated that roughly 50% of rTM-

N3 had been conjugated to the biotin-PEG linker.  Upon subsequent purification with 

centrifugal dialysis and monomeric avidin chromatography, immunoblotting 

demonstrated the presence of a single species of molecular weight corresponding to the 

desired rTM-PEG-biotin conjugate (Figure 5.2B).  Biotinylation was confirmed with 

Western blotting using HRP-labeled streptavidin (Figure 5.2C).  Previous studies have 

demonstrated that TM activity is not lost upon site-specific conjugation of poly(ethylene 

glycol) [463]. Significantly, C-terminal biotinylation is anticipated to facilitate 

immobilization TM in a manner that closely mimics its structure as it appears on the cell 

surface, and, consequently preserve activity upon immobilization. 
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Scheme 5.1. Site-specific biotinylation of recombinant human thrombomodulin (rTM) 
through Staudinger ligation between rTM engineered with a C-terminal azido group (1) 
and triarylphosphine-PEG3.4kD-biotin (2) linker.  
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Figure 5.2. Site-specific biotinylation of recombinant human thrombomodulin. (A) Upon 
reaction between rTM-N3 and triarylphosphine-PEG3.4kD-biotin SDS PAGE reveals the 
presence of two species separated by approximately 4 kD (Lane 1), corresponding to 
the desired biotinylated conjugate (∗) and unreacted rTM-N3. A molecular weight shift 
was not observed in a parallel control reaction using rTM engineered without an azido 
group (Lane 2), demonstrating the specificity of the Staudinger ligation. Lane 3 
corresponds to a 20 kD marker. (B) Western blot against human TM after initial 
conjugation (Lane 2) and subsequent purification (Lane 3). After purification via 
centrifugal dialysis and monomeric avidin chromatography, a single species 
corresponding to the expected molecular weight of the desired biotin-PEG-TM conjugate 
is observed  (∗). Lane 1: molecular weight ladder; 20 kD marker indicated. (C) Western 
blot against biotin using HRP-labeled streptavidin confirms biotinylation of the construct 
(∗; Lane 2). Lane 1: molecular weight ladder; 20 kD marker indicated. 
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Streptavidin binding may be maximized through optimization of cell 

surface biotinylation strategies. Biotinylation of pancreatic islets has commonly been 

employed as a facile strategy for immobilizing macromolecules on the islet surface [227, 

236]. However, little work has been done to quantitatively optimize reaction schemes or 

conditions to maximize the surface density of biotin moieties, or subsequently 

immobilized (strept)avidin, while maintaining high islet viability. To date, covalent 

modification of islet surfaces has been accomplished nearly exclusively through amine-

reactive chemistries, most commonly NHS-esters  [13, 155, 165, 227, 236], though the 

dependence of conjugation efficiency on important reaction conditions, most notably 

concentration, are rarely investigated or reported. Cell-surface carbohydrates, in 

particular sialic acid residues, may be covalently modified through mild periodate 

oxidation of cis-glycol groups and subsequent hydrazone linkage between resultant 

aldehydes and hydrazine-activated molecules [384, 401, 403, 404]. While this approach 

has been used to label or modify a variety of cell types, its utility for chemically re-

engineering the surface of pancreatic islets has not been explored. Therefore, in an 

effort to maximize the amount of rTM that may be immobilized on islets, the capacity of 

both NHS ester and aldehyde-hydrazide biotinylation strategies to facilitate 

immobilization of streptavidin was investigated (Scheme 5.2).  

To determine the effect of a poly(ethylene gycol) (PEG) spacer arm between the 

covalent linkage and biotin moiety, islets were reacted with either NHS-PEG3.4kD-biotin or 

sulfosuccinimidyl-6-(biotinamido) hexanoate (sNHS-LC-biotin) at 4 mM for 1 hour, and 

the amount of immobilized streptavidin (SA) compared. Use of NHS-PEG3.4kD-biotin 

yielded significantly less SA than sNHS-LC-biotin (p<0.05, Figure 5.3A), potentially due 

to generation of a steric barrier with increasing density of PEG chains on the islet 

surface [464]. Based on these findings, sNHS-LC-biotin was used to investigate the 

effect of concentration on conjugation efficiency. Increasing sNHS-LC-biotin 



www.manaraa.com

 146

concentration to 20 mM did not have a significant effect on the amount of surface-bound 

SA (Figure 5.3A), suggesting saturation of SA surface density through this approach. 

Increasing reaction time beyond 1 hour was not explored, as hydrolysis of NHS-esters 

occurs rapidly and is reported to be nearly complete within an hour [415]. 

Though less commonly employed, coupling between cell surface aldehydes and 

hydrazide-derivatized molecules offers an alternative to amine-reactive chemistries, and, 

therefore, was investigated as a means to biotinylate islets. Islets were treated with 1 

mM NaIO4 for 15 minutes to generate cell surface aldehyde groups [403], and 

subsequently reacted with 4 mM hydrazide-LC-biotin for 1 and 3 hours. No statistical 

difference (p>0.05) in immobilized SA was detected between 1 and 3 hour incubation 

times (Figure 5.3B), suggesting that hydrazone bond formation between hydrazide-LC-

biotin and cell surface aldehydes approaches equilibrium after an hour. Increasing the 

concentration of hydrazide-LC-biotin to 20 mM resulted in a significant increase in SA 

binding (p<0.05), yielding levels statistically comparable (p>0.05) to optimized NHS-LC-

biotin coupling. Exploration of higher concentrations was not possible due to the 

solubility limit of hydrazide-LC-biotin.  

It was next postulated that biotin surface density might be further increased 

through combination of amine- and aldehyde-reactive coupling strategies. To investigate 

this possibility, islets were serially biotinylated using conditions optimized for each 

strategy. Islets were first treated with 1 mM NaIO4 for 15 minutes, reacted with 20 mM 

hydrazide-LC-biotin for 1 hour, and finally reacted with 4 mM NHS-LC-biotin for 1 hour. 

This combination approach yielded a significant increase (p<0.05) in SA density of 

approximately 50 percent relative to either treatment alone (Figure 5.3C). Interestingly, a 

doubling in SA density was not observed, suggesting that the relative contributions from 

each conjugation strategy were not additive, a potential indicator of molecular crowding 

or surface saturation. Regardless, these results demonstrate that the surface density of 
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streptavidin, and, consequently, the surface density of biotinylated macromolecules, may 

be increased through chemically targeting multiple reactive groups on the cell surface.   

Given the role of cell surface proteins and carbohydrates in diverse biochemical 

processes critical to cell survival, covalent modification of the islet surface may have 

detrimental impacts on islet viability. While previous reports demonstrate that islet 

viability and function are maintained upon biotinylation and subsequent immobilization of 

(strept)avidin [227, 236], suboptimal reaction conditions were used and aldehyde-

hydrazide coupling was not explored. Therefore, the viability of islets biotinylated through 

the previously described combination approach and subsequently incubated with 

streptavidin was assessed via calcein AM and ethidium homodimer staining and 

subsequent quantification with image analysis (Figure 5.4). Combination treatment had 

no discernable impact on islet viability relative to non-treated controls, both immediately 

after treatment (97.2 ± 2.0% vs. 98.4 ± 2.0%, p>0.01) as well as 24 hours later (98.3 ± 

2.0% vs. 98.3 ± 1.6%, p>0.05), indicating that combination biotinylation does not induce 

late necrosis or apoptosis. A slight change in islet morphology was noted immediately 

after combination treatment, but was found to return to normal after 18-24 hours in 

culture. Qualitative comparison of islets biotinylated using sNHS-LC-biotin or hydrazide-

LC-biotin, indicate the observed changes in morphology may be attributed to use of 

sNHS-LC-biotin. 
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Scheme 5.2.  Islet surface biotinylation through chemical targeting of amines and 
aldehydes. (A) Conjugation of biotin (●) via hydrazone bond formation between biotin-
hydrazide and aldehydes generated through mild sodium metaperiodate (NaIO4) 
oxidation of sialic acid residues. (B) Islet biotinylation using NHS-ester functionalized 
biotinylation reagents. (C) Strategies may be utilized in combination to increase density 
of biotin groups on the cell surface.  
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Figure 5.3. Islet surface density of streptavidin may be maximized through optimization 
of biotinylation reactions targeting cell surface amines and aldehydes.  (A) Comparison 
of N-hydroxysuccinimide ester (NHS) functionalized biotinylation reagents and reaction 
conditions demonstrated maximum streptavidin incorporation using sulfosuccinimidyl-6-
[biotinamido]hexanoate (sNHS-LC-B) at a concentration of 4 mM. (B) Comparison of 
reaction conditions used for coupling [biotinamido]hexanoate hydrazide (NHNH2-LC-B) 
to cell surface aldehydes demonstrated a dependence on NHNH2-LC-B concentration, 
but not on reaction time at 4 mM. (C) Optimized conditions for sNHS-LC-B and NHNH2-
LC-B (2+6) can be combined to increase streptavidin surface density by nearly 50% over 
either strategy alone. Bars labeled with the letter a are not statistically different from 
each other (p>0.05).  

 

 

  

 

Table 5.2. Biotinylation Conditions

 Biotinylation 
Reagent mM t(h) 

1 NHS-PEG*-B 4 1 
2 sNHS-LC-B 4 1 
3 sNHS-LC-B 20 1 
4 NHNH2-LC-B 4 1 
5 NHNH2-LC-B 4 3 
6 NHNH2-LC-B 20 1 

*3.4kD. NHNH2 = hydrazide. B=biotin 
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Figure 5.4. Sequential biotinylation of cell surface aldehydes and amines does not 
adversely influence islet viability. Islet viability upon combination biotinylation and 
subsequent immobilization of streptavidin (grey bars) was statistically similar (p>0.01) to 
untreated controls (black bars) immediately (t=0) and 24 hours (t= 24 h) after treatment 
(A). Representative bright field and confocal micrographs of islets stained with calcium 
AM (green, viable) and ethidium homodimer (red, non-viable) of islets immediately after 
treatment (B) and without treatment (C). Scale bar = 50 µm.  
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 Immobilization of rTM on islets increases rates of protein C activation. 

Maximizing the amount of streptavidin on the islet surface is anticipated to facilitate 

immobilization of a high density of rTM-biotin, with an attendant increase in the ability of 

islets to activate protein C. Islets were biotinylated via combination treatment, incubated 

with 0.1 mg/ml streptavidin for 30 minutes followed by incubation with rTM-biotin at 3.5 

µM for one hour. Upon extensive rinsing of treated islets to remove unbound rTM-biotin, 

APC generation was measured and compared to untreated islets and islets treated only 

with biotinylation reagents and streptavidin as controls (Figure 5.5). Treatment of islets 

with rTM-biotin resulted in an approximately three-fold increase in APC production 

relative to untreated controls, which, as anticipated, activated protein C as a result of 

endogenous expression of TM.  No significant difference in APC generation relative to 

untreated controls was observed after biotinylation and subsequent immobilization of 

streptavidin, indicating that the observed increase in APC production is not an artifact of 

increased endogenous TM expression, but rather a consequence of rTM-biotin 

incorporation. Hence, cell surface immobilization of thrombomodulin significantly 

increases the capacity of islets to activate protein C, with the potential to attenuate islet-

mediated thrombotic responses initiated by islet-derived tissue factor.   
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Figure 5.5. Immobilization of rTM on the islet surface via streptavidin-biotin interactions 
increases rates of activated protein C (APC) generation.  Upon combination biotinylation 
and subsequent incubation with streptavidin (Biotin + SA) islets were incubated with 
rTM-biotin at 3.5 µM for 1 hour, resulting in an approximately three-fold increase in the 
rate of APC generation relative to untreated controls.  Immobilization of streptavidin 
alone was found to have no effect on rates of APC generation (∗p<0.05).  
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5.4. DISCUSSION 

Marked activation of coagulation has been noted minutes after islet infusion in 

patients undergoing clinical intraportal islet transplantation [56, 60], leading to significant 

levels of early islet destruction and primary non-function, as well as overt and subclinical 

episodes of portal vein thrombosis [433, 434].  While a number of factors have been 

implicated in the initiation of such responses, including release of islet-derived 

inflammatory mediators and local injury to endothelial cells [52], compelling evidence 

has recently emerged that tissue factor expression by islets acts as the primary initiator 

of inflammation in intraportal islet transplantation [3, 60, 465]. As a consequence of islet-

initiated thrombin generation, activated platelets bind to the islet surface and further 

amplify thrombosis and inflammation, ultimately leading to fibrin clot formation [45], 

leukocyte infiltration [37, 45-47], and elevated levels of proinflammatory mediators that 

adversely effect islet viability and function [49, 51, 52].  

In recognition of the prothrombotic effects of intraportal islet infusion, most 

centers performing allogeneic islet transplantation currently use systemic heparin at the 

time of transplantation [18, 25].  Despite administration as a bolus dose of ~75 U/kg 

body weight, corresponding to ~5,000 U for a 70-kg person (~1 U/ml blood), serum 

levels of TAT, fVIIa-AT, and D-dimer remain elevated. Korsgren and colleagues [54] 

have observed that heparin prevented islet-induced coagulation in an ex vivo model, but 

at a four-fold higher concentration than that used clinically (4 U/ml blood).  Furthermore, 

extensive platelet and fibrin formation, as well infiltration of CD11b+ cells continued to be 

observed.  Finally, even if one were to accept the risk of bleeding complications to be 

anticipated at a dosing level of 300 U heparin/kg, systemic heparin has a half-life of one 

hour and is therefore active for only a few hours.  Thus, the potential therapeutic impact 

of intravenously administered heparin is limited both by its systemic anticoagulant 

activity that increases the risk of bleeding complications and short half-life.  
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As an alternative strategy, Contreras et al. have recently demonstrated that 

intravenous administration of APC dramatically inhibited interhepatic fibrin deposition, 

portal vein endothelial cell activation, cytokine production, and leukocyte infiltration, 

resulting in a reduced loss of functional mass in a murine model of intraportal islet 

transplantation [45].  While promising, APC was administered at a 10-fold higher dose 

than that recommended for clinical use. Moreover, the half-life of APC is approximately 

10 to 20 minutes, which would necessitate repetitive dosing to achieve a sustained effect 

[219].  By contrast, thrombomodulin provides a means for prolonged generation of APC 

as long as exogenous TM remains active and elevated levels of thrombin are being 

produced. Indeed, studies have demonstrated that administration of TM reduces 

endotoxin induced lung injury [466], limits thrombosis in an arteriovenous shunt model 

[467], and attenuates thrombotic glomerulonephritis in rats [468].  

While it is now generally accepted that islet-derived tissue factor is a key initiator 

of thrombosis and inflammation in islet transplantation, surprisingly little consideration 

has been given to mechanisms which regulate coagulation in the intact pancreas.  We 

have demonstrated that both murine and human islets activate protein C in a thrombin-

dependent manner, indicating TM expression by isolated and cultured islets.  Though 

endothelial cells within islets are reportedly lost after several days of culture [1, 2], it is 

conceivable that islet-mediated APC generation is due to residual endothelial cells. 

However, TM expression has been previously noted in a β cell line [459], a likely 

indicator that endocrine cells contribute to the observed catalytic activity.  These 

findings, together with previous reports demonstrating tissue factor expression by islets 

[55], suggest that islets possess the necessary machinery to regulate coagulation. 

However, despite an endogenous capacity to activate protein C, thrombin generation via 

the tissue factor pathway dominates the response, suggesting a polarization of isolated 

islets towards a pro-coagulant/pro-inflammatory phenotype.  Indeed, as a result of 
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metabolic and mechanical stress associated with isolation and culture, a number of 

inflammatory signaling pathways are triggered [1, 36, 52, 70-81], potentially leading to 

increased tissue factor expression.  Indeed, inhibition of inflammatory pathways through 

incubation of islets with corticosteriods resulted in a marked reduction in the expression 

of TF [469].  Moreover, pro-inflammatory cytokines, such as interleukin-1 and TNF-α, 

may also downregulate the expression of thrombomodulin by islets with a concomitant 

decrease in activated protein C production, as has been previously demonstrated to 

occur in endothelial cells [470, 471]. 

Accordingly, we postulated that by increasing levels of TM on the islet surface 

enhanced APC generation could be achieved, with an attendant attenuation of 

thrombotic responses initiated by tissue factor. Towards this objective, we used a 

biosynthetic approach to generate a recombinant human TM containing the extracellular 

EGF-like domains 4-6 as well as a C-terminal azido (N3) group, to which biotin can be 

covalently coupled via Staudinger ligation [370] using a heterobifunctional biotin-PEG-

tripheynlphosphine linker.  While biotinylation of proteins is commonly performed, 

generally through targeting amino groups, the exquisite orthogonality of the Staudinger 

ligation [398] provides a strategy for biotinylation in a site-specific manner, thereby 

eliminating loss of protein activity associated with covalent modification of amino acids 

within the active site [463]. Moreover, through incorporating biotin at the C-terminus, 

separated from the active EGF-like domains by a PEG spacer arm, the construct may be 

linked to immobilized streptavidin in a manner that more closely mimics the presentation 

of native TM [439]. 

 Despite the common use of biotin-(strept)avidin interactions for islet surface 

modification, little attention has been given to optimizing coupling chemistry or 

conditions.  Moreover, covalent islet surface biotinylation strategies have almost 

exclusively targeted amino groups within cell surface proteins  [13, 155, 165, 227, 236]. 
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In an effort maximize the surface density of immobilized biotinylated TM, both amine-

reactive N-hydroxysuccinimide (NHS) esters and aldehyde-hydrazide coupling were 

explored. Through sequential conjugation of hydrazide-LC-biotin to cell surface 

aldehydes and sulfoNHS-LC-biotin to amines, the amount of streptavidin that could be 

incorporated on the islet surface could be increased by ~50% relative to conventional 

cell surface biotinylation using NHS-esters.  Significantly, to the author’s knowledge, this 

is the first report describing chemical targeting of both amine and aldehyde groups on 

the surface of cells or tissue.  

Immobilization of rTM-biotin on the islet surface resulted in an approximately 

three-fold increase in the rate of APC generation relative to untreated controls.  Whether 

such rates of APC generation will be sufficient to improve the outcome of intraportal islet 

transplantation has yet to be determined and is an area of ongoing investigation.  It 

should be reemphasized that the observed fold increase may be significantly higher 

upon islet transplantation as a consequence of decreased endogenous TM expression in 

response to inflammation.  Moreover, several investigators have observed that 

inflammatory stimuli, similar to those generated upon intraportal islet transplantation, 

decreases thrombmodulin expression in hepatic sinusoidal endothelial cells [472-474], 

thereby further decreasing APC production in the liver.  Hence, conjugation of TM to 

islets provides a strategy for targeting TM to the site of islet transplantation, potentially 

allowing high local concentrations of APC to be generated. Interestingly, it has recently 

been reported that surface heparinization of intraportal islet grafts reduced TAT 

production and early islet damage in an allogenic porcine model [227].  While a direct 

comparison with soluble heparin was not made, in light of the inefficacy of systemically 

administered heparin during clinical islet transplantation [18, 25, 55, 56, 60] these 

findings potentially illustrate the increased therapeutic benefit achieved through local 
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delivery of anticoagulants to the portal bed. Given the increased capacity of TM to inhibit 

thrombin generation, similar or more substantial effects might be reasonably anticipated.  

Regulation of islet-initiated coagulation is governed by interplay between, among 

other factors, the relative amounts of TM and TF presented at the islet-blood interface.  

Hence, conjugation of TM to the islet surface may also act synergistically with strategies 

directed at inhibiting tissue factor expression or activity [202, 203, 469].  Notably, 

blockade of TF through pre-incubation of islets with site inactivated fVIIa or anti-TF 

antibody has been shown to inhibit thrombotic responses and improve islet survival both 

in vitro [55] and in vivo [221].  Interestingly, Wang et al. have demonstrated marked 

improvements in the therapeutic efficacy of a fusion protein consisting of a TF-

neutralizing single-chain antibody and the active site of TM relative to administration of 

either component of the conjugate separately or in combination [475].  We have recently 

developed a family of multilayer polymer thin films of diverse architecture, properties, 

and composition that may be assembled directly on the islet surface, providing a 

potential strategy to mask islet-associated TF (Chapters 2 and 3). Moreover, film 

constituents have been designed to allow biotin, aldehyde, amino, and other reactive 

groups to be readily incorporated (Chapter 2 and 4), providing reactive handles through 

which rTM may be immobilized.  Through simultaneous blockade of tissue factor and 

presentation of thrombomodulin, it may be possible to effectively restore the physical 

and biochemical barriers to thrombosis and inflammation afforded by endothelial cells 

within the intact pancreas.  

 

5.5. CONCLUSIONS 

Though intrahepatic infusion of islets remains the clinical standard for islet 

transplantation, direct contact between islet-derived tissue factor and blood initiates 

thrombosis and inflammation in the immediate post-transplant period with deleterious 



www.manaraa.com

 158

consequences to islet survival and function.  We have presented a strategy for 

conferring anticoagulant potential to islets through immobilization of rTM on the islet 

surface.  Through site-specific, C-terminal biotinylation of TM and optimization of cell 

surface biotinylation strategies targeting both amine and aldehyde groups, integration of 

rTM resulted in an approximately three-fold increase in the catalytic capacity of islets to 

activate protein C.  Conjugation of TM to islets represents a facile strategy for increasing 

APC generation at the site of transplantation, and such localized delivery of 

anticoagulants offers the potential to increase rates of islet survival and function with 

attendant improvements in clinical outcomes.  
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CHAPTER 6 

Conclusions and Future Directions 

 

 Protection of transplanted islets from deleterious host immune and inflammatory 

responses will be necessary to exploit the full clinical potential of islet transplantation, 

and islet encapsulation and cell surface modification stand to play pivotal roles towards 

this end.  Despite considerably progress over the past decade, adherent challenges 

have spawned new paradigms in islet encapsulation including implantation of 

encapsulated islets into native tissue microvasculature, most notably the liver, 

minimization of capsule and transplant volume, and the design of biologically active 

barriers.  The work presented in this dissertation describes the design of novel conformal 

coatings and cell surface modification strategies with broad implications for improving 

islet engraftment.  Specifically, the process of layer-by-layer self assembly was 

employed to generate nanothin films of diverse architecture with tunable properties 

directly on the extracellular surface of individual islets.  Importantly, these studies are the 

first to report in vivo survival and function of nanoencapsulated islets. Moreover, through 

proper design of film constituents, coatings displaying biotin groups and bioorthogonally 

reactive handles could be generated, providing a facile approach through which to 

integrate immunomodulatory or anti-inflammatory molecules into conformal coatings.  

Towards this end, a strategy was developed to tether thrombomodulin to the islet 

surface in a site-specific manner, thereby facilitating local generation of the powerful 

anti-inflammatory agent activated protein C.  Collectively, the methodologies, polymers, 

and strategies described in this dissertation have helped established new paradigms for 

the design of anti-inflammatory conformal islet coatings. Furthermore, this work provides 

novel biomolecular strategies for resurfacing the biochemical landscape of living cell and 
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tissue interfaces with broad biomedical and biotechnological applications in cell-based 

therapy and beyond.  

 As these studies provide the foundation for the long-term goal of designing 

conformal barriers that improve islet engraftment, several recommendations for future 

investigations are proposed for each of the previous chapters.  

 Chapter 2. Layer-by-Layer Assembly of a Conformal Nanothin 

Poly(ethylene glycol) Coating for Intraportal Islet Transplantation. Using a 

combination of electrostatic interactions and biorecognition, PEG-rich thin films could be 

assembled on the surface of islets through layer-by-layer deposition of PPB and 

streptavidin. Prior to the initiation of these studies, not a singular report existed in the 

literature describing the assembly of layer-by-layer coatings on mammalian cells, and, in 

this regard, this work has helped launch a new paradigm in cell encapsulation.  Perhaps 

most importantly, the observed relationships between PPB structure and islet viability 

served as the motivation for generating cytocompatible polyelectrolyte multilayer films 

described in Chapter 3.   

 Though it is significant that PPB/SA coated islets maintained function in vivo and 

did not impair engraftment, as has been reported upon intraportal transplantation of 

microencapsulated islets, the coating also did not significantly improve engraftment in 

this model. While a trend towards increased rates of euglycemia might suggest some 

protection afforded by the film, the barrier capacity of this coating appears to be 

insufficient, and, therefore, further characterization and subsequent optimization of film 

properties including thickness, permeability, and stability are an area of future 

investigation.  Having used relatively long PEG chains in the synthesis of PPB and a 

relatively bulky molecule, streptavidin, to connect adjacent layers, it is conceivable, 

perhaps likely, that PPB/SA films yielded relatively large pores incapable of presenting a 
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barrier to diffusion of soluble mediators of inflammation and thrombosis to their 

respective targets on the islet surface.  PPB with shorter PEG chains, for example 

P12P4(biotin) described in Chapter 4, might reasonably be expected to yield smaller 

pore sizes.  Though inflammatory events that underlie early islet destruction are thought 

to resolve within ~24 hours, it is also possible that PPB/SA films were not sufficiently 

stable in vivo, particularly in an inflammatory environment. Stability might be increased 

through assembly of more layers or through integration of crosslinking strategies. For 

example, structurally similar terpolymers containing both PEG(biotin) as well as PEG(N3) 

grafts might facilitate film growth via biorecognition while simultaneously providing a 

strategy for subsequent crosslinking with a bifunctionalized triphenylphosphine linker; 

such a film could be readily generated and investigated using the methods and 

bioconjugation strategies described in this dissertation. Furthermore, covalent 

crosslinking of films might also provide increased control of film permeability.   

 Chapter 3. Cell Surface-Supported Polyelectrolyte Multilayer Thin Films as 

Conformal Islet Coatings. The cytocompatibility of PPB described in Chapter 3 relative 

to conventional polycations prompted investigations aimed at developing polyelectrolyte 

multilayer (PEM) thin films that could be assembled directly on the islet surface without 

adversely influencing viability.  Through control of grafting ratio, grafted PEG length, and 

PLL backbone molecular weight, several structural variants capable of initiating and 

propagating the growth of PLL-g-PEG/alginate PEM films on the extracellular surface of 

islets were identified.  Planar characterization of this novel class of PEM films indicated 

that film thickness and composition may be tailored through appropriate control of layer 

number and copolymer properties.  To date, only a handful of reports have described the 

assembly of PEM films directly on the surface of viable mammalian cells or tissue, and 

all have utilized polycations and/or conditions found to be highly cytotoxic to islets. 
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Hence, the polycations and PEM films described herein represent a unique opportunity 

to translate the diverse functionality afforded by PEM films to the surface of viable 

mammalian cells and tissue.  

 Critical to these investigations was the synthesis of a library of PLL-g-PEG 

copolymers that allowed partial elucidation of structure-cytotoxicity relationships and, 

importantly, critical grafting ratios to be defined.  While these studies have revealed 

important trends and boundaries for polycation design, basic research exploring the 

biochemical and biophysical processes that dictate PLL-g-PEG cytotoxicity, interfacial 

conformation, and membrane translocation potential upon interaction with cell or model 

membranes is an important area of future study. Indeed, Lee and Larson have recently 

performed molecular dynamics simulations of PLL interacting with lipid bilayers and have 

observed a dependence on PLL charge density in the disruption of cell membranes 

[476]. Similar models of PLL-g-PEG variants may provide a valuable tool for the design 

and optimization of cytocompatible polycations as constituents in cell surface-supported 

PEM films.  

 From this work a minimum of three cytocompatible PEM films have emerged as 

candidates for conformal islet coating. Based on the available data, films assembled 

using P12P4[2.5] most closely mimic PLL/alginate with respect to thickness and appear 

to present the most compact and polyelectrolyte-dense film structure.  However, further 

exploration into film thickness in the hydrated state, permeability, and resistance to 

protein adsorption will be necessary to select films with desired properties.  Moreover, 

characterization of the stability of films assembled on islets will be necessary to more 

accurately predict the anticipated duration of efficacy. Inadequate film stability might be 

resolved through incorporation of film constituents bearing orthogonally reactive groups 

such as those described in Chapter 4. For example, layer-by-layer assembly of films 

using P12P4[2.5](hydrazide) and alginate-aldehyde may assemble through electrostatic 
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mechanisms while crosslinking in situ through hydrazone bond formation between film 

components.  As film stability may also be linked to the capacity of cells to endocytose or 

otherwise internalize polymers neighboring the cell surface, increasing layer number, 

and hence thickness, may yield nanoassembled structures recalcitrant to such 

mechanisms of instability.  Data presented herein demonstrates that prolonged exposure 

(6 hrs) to PLL-g-PEG copolymers at the critical grafting ratio does not adversely 

influence islet viability, suggesting considerably more layers may be deposited. 

Accordingly, current research efforts have been directed at the development of an 

automated system for assembly of islet-supported layer-by-layer thin films. Finally, the 

efficacy of optimized coating(s) must be assessed in a murine model of intraportal islet 

transplantation as described in Chapter 2.  

 Chapter 4. A Modular Approach to Cell and Tissue Surface Engineering 

Using Cytocompatible Poly(L-lysine)-graft-poly(ethylene glycol) Copolymers and 

Polyelectrolyte Multilayer Films. Critical to the development of effective conformal islet 

coatings is an inherent strategy through which to immobilize or otherwise incorporate 

bioactive molecules for directing desired biochemical or cellular responses.  Towards 

this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide 

moieties were synthesized and used, both alone or in combination, to capture 

streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the 

islet surface. Alternatively, chemical and biological functionality may be conferred to 

films through integration of modified or bioactive polyanions. To exemplify this concept, 

PEM films assembled using alginate chemically modified to contain aldehyde groups 

could be used to integrate hydrazide-functionalized molecules with the film. Collectively, 

the strategies presented herein provide a modular approach to cell and tissue surface 
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engineering whereby diverse film constituents may be combined in unique manners to 

control the biochemical composition of the cellular interface.  

 In accord with the overall objective of this work, the approaches described in this 

chapter may be engaged to bestow anti-inflammatory capabilities to islets, and 

demonstration of this potential is clearly an area of future investigation. Functionalized 

copolymers may be employed to drive film assembly or used merely as an outer layer to 

display handles for simultaneous immobilization and presentation of appropriately 

functionalized anticoagulants or anti-inflammatories.  For example, assembly of films via 

LbL deposition of P12P4(biotin) and alginate-aldehyde, followed by subsequent 

biotinylation of aldehydes with biotin-hydrazide, may present a dense array of biotin 

groups through which rTM-biotin, discussed in Chapter 5, may be immobilized. 

Alternatively, heparin could be employed as the polyanion, potentially attenuating 

thrombogenic responses initiated by transplanted islets in contact with whole blood. 

Finally, film constituents functionalized with biorthogonally reactive motifs provide 

opportunities for cytocompatible film crosslinking with potential implications for improving 

the barrier capacity of cell surface-supported PEMs.  

 More generally, future efforts may focus on identifying potential applications and 

limitations of the strategies presented herein as tools for cell and tissue surface 

engineering. This work has highlighted important advantages of adsorbed PLL-g-PEG 

monolayers relative to several other cell surface modification strategies. Notably, cell 

surface hydrazides were presented for the first time, azide groups could be generated 

quickly and without reliance on metabolic machinery, cell surfaces could be modified in 

complex biological media, and aldehyde groups could be generated without modifying 

native cell surface glycans. However, a need exists to quantitatively compare these 

strategies to existing covalent and noncovalent cell surface engineering approaches in 

terms of surface density, stability, and applicability towards other cell types.  
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 Chapter 5. Surface Re-engineering of Pancreatic Islets with 

Thrombomodulin  Even a conformal barrier that protects islets from contact with host 

cells and macromolecules cannot prevent the diffusion of low molecular weight 

inflammatory mediators to and from the islet, and, therefore, the efficacy of conformal 

coatings may be improved through integrating anti-inflammatory capabilities. Through 

site-specific, C-terminal biotinylation of thrombomodulin (TM) and optimization of cell 

surface biotinylation, TM could be integrated with the islet surface, increasing the 

catalytic capacity of islets to activate protein C nearly three-fold. 

 Conjugation of TM to islets represents a facile strategy for increasing local 

concentrations of APC at the site of transplantation, and, accordingly, future efforts 

should assess the efficacy of this approach in a murine model of intraportal islet 

transplantation as described in Chapter 2 or in the tubing loop model of islet-blood 

contact described in Chapter 5. While immobilization of TM directly to the islet surface 

may prove effective, it is postulated that presentation of TM on a protective conformal 

coating will further enhance islet engraftment.  In principle, the strategies used to 

immobilize TM to the islet surface may also be used to integrate TM with multilayer thin 

films so long as films present biotin or reactive handles for chemoselective biotinylation.  

However, verification of this supposition and measurement of resultant rates of APC 

generation remains necessary.  Additionally, development of films bearing reactive 

handles (Chapter 4) may provide future opportunities for linking TM directly to the 

surface of films, eliminating the need for streptavidin. Through optimization of film 

properties and TM surface density, physical and biochemical barriers to thrombosis and 

inflammation may act synergistically in improving the outcome of islet transplantation.    
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APPENDIX A 

In Vivo Biocompatibility and Stability of a Substrate-Supported 

Polymerizable Membrane-Mimetic Film§ 

 
 
 
A.1.  INTRODUCTION 
 
 The cell membrane offers a unique structural model for the molecular 

engineering of biocompatible and bioactive surfaces whereby physiochemical and 

biological properties may be modulated by a diverse set of self-assembled surface 

constituents. Supported lipid membranes, or membrane-mimetic thin films, can be 

produced by Langmuir-Blodgett deposition or exposure of surfaces to a dilute solution of 

emulsified lipids or unilamellar lipid vesicles [477].  Such films have emerged as powerful 

models of cell and tissue surfaces [478], and have garnered considerable interest as 

coatings for biosensing devices [479].  Significantly, supported phosphatidylcholine (PC) 

films have been shown to limit protein adsorption and subsequent cell adhesion in vitro 

[480-486], a phenomenon linked to the zwiterionic nature of the PC head group [481]. 

Despite these favorable characteristics, the use of membrane-mimetic thin films as 

coatings for implantable biomaterials remains limited, in part, by a lack of stability for 

most applications outside of a laboratory environment [487, 488]. In an effort to improve 

the stability of membrane-mimetic films several investigators have developed 

phospholipids functionalized with polymerizable moieties that can be polymerized in situ 

                                                 

 
 
§Reproduced from Wilson JT, Cui W, Sun XL, Tucker-Burden C, Weber CJ, Chaikof EL. 
In vivo biocompatibility and stability of a substrate-supported polymerizable membrane-
mimetic film. Biomaterials 2007;28:609-17. 
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after film formation [481, 489-492], while maintaining resistance to protein adsorption 

[492, 493].  However, the in vivo biostability and biocompatibility of substrate supported, 

polymerizable lipid membranes has not been evaluated. Moreover, these films have 

been fabricated on a limited number of substrates with relevance to implantable 

materials. PC-based polymers, however, have been used to modify a number of 

implantable biomaterials including Dacron® [494] and ePTFE vascular prostheses [495, 

496], polyethylene joint prostheses [497], medical grade stainless steel [498], and 

coronary stents [499, 500], and have demonstrated excellent hemocompatibility and 

biocompatibility in vivo. However, the use of PC-based polymers does not create a 

uniform, closely packed array of PC groups at the host-material interface, and therefore, 

lacks the degree of structural control and versatility offered by self-assembled 

phosopholipid films.  

 We have previously reported the in situ polymerization of phospholipids on self-

assembled monolayers of octadecyl mercaptan bound to gold [501], octadecyl 

trichlorosilane on glass [492, 502], and on an amphiphilic polymer cushion [503, 504]. 

Moreover, we have demonstrated the ability to functionalize these surfaces by creating 

glycocalyx-mimetic surfaces [505] and protein C activating surfaces by the functional 

reconstitution of thrombomodulin [506-508]. Significantly, we have recently extended this 

approach to form membrane-mimetic films on the surface of implantable biomaterials, 

such as cell encapsulation devices [504] and the lumenal surface of a small diameter 

ePTFE vascular prosthesis [509]. Notably, in an ex vivo baboon shunt model, platelet 

adhesion was dramatically reduced when ePTFE grafts were coated with a membrane-

mimetic film compared to non-treated grafts. In this report, we evaluate the short term 

biostability and biocompatibility of a polymerizable membrane-mimetic film assembled 

on alginate microcapsules implanted into the peritoneal cavity of mice.  
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A.2.  MATERIALS AND METHODS 
 
 Reagents.  All starting materials and synthetic reagents were purchased from 

commercial suppliers unless otherwise noted. HEPES buffered saline (HBS) was 

prepared by dissolving HEPES (Cellgro) at 25 mM in normal saline and adjusting pH to 

7.4.  Alginate (Alg; Pronova UP LVM) was obtained from NovaMatrix (Oslo, Norway) and 

used as received.  Poly-L-lysine (PLL; MW > 300 kDa and MW 27 kDa), nicotinamide, 

CaCl2, sodium citrate, and CHES were all purchased from Sigma.  All solutions were 

filter sterilized using a bottle top filter (0.22 µm pore size, cellulose acetate, Corning, 

NY).  A polyelectrolyte amphiphilic terpolymer with sulfonate anchoring groups, referred 

to as poly(HEA6:DOD3:SS1), was synthesized, as detailed elsewhere [504].  Briefly, HEA 

(hydroxyethyl acrylate) is a hydrophilic monomer which forms a hydrophilic cushion, 

DOD (N,N-dioctadecylcarbamoyl-propionic acid) is a dialkyl bearing monomer which 

self-assembles to form an alkylated thin film, and SS (styrene sulfonate) facilitates 

electrostatic anchoring to positively charged surfaces. 1-Palmitoyl-2-(12-

(acryloyloxy)dodecanoyl)-sn-glycero-3-phosphorylcholine (mono-AcrylPC) and 1-

palmitoyl-2-(12-(acryloyloxy)dodecanoyl)-sn-glycero-3-phosphorylethanolamine-Texas 

red (mono-AcrylPE-TR) were synthesized, as previously described [510].   

Formation of a membrane-mimetic film on alginate microcapsules.  Alginate 

microcapsules were produced using an electrostatic bead generator (Nisco Engineering 

Inc, Switzerland) set at 4.7 kV. Alginate (2% w/v in HBS) was extruded at a flow rate of 

6.0 ml/min through a flat-end needle with an internal diameter of 0.25 mm into a 1.1% 

w/v CaCl2 solution in HBS. Microcapsules were then serially rinsed with 0.55 % and 

0.28% w/v CaCl2 in HBS, and finally washed in HBS.  

A PEM film was assembled on the surface of alginate microcapsules through 

layer-by-layer deposition of PLL and alginate. Microcapsules were incubated with 0.1% 
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w/v PLL (MW > 300,000) in HBS for 2 minutes, rinsed twice with HBS, and then 

incubated for 2 minutes in 0.15% w/v alginate in HBS followed by two additional rinses in 

HBS. This process completed a cycle of forming a single PLL/Alg bilayer and was 

repeated a second time, to fabricate a (PLL/Alg)2 film. Microcapsules were then 

incubated in sodium citrate (55 mM in HBS) for 20 minutes to liquefy the alginate core, 

and finally incubated with PLL to confer a positive surface charge and rinsed with normal 

saline.  

To fabricate a membrane-mimetic film on the material surface, (PLL/Alg)2/PLL 

coated alginate microcapsules were incubated in a 0.1 mM solution of 

poly(HEA6:DOD3:SS1) in 1% DMSO/HBS for 2 minutes and subsequently rinsed three 

times with HBS (Scheme A.1).  The formation of a surface supported assembly of mono-

acrylated lipids was achieved by incubating poly(HEA6:DOD3:SS1) coated microcapsules 

(1 ml) in a lipid vesicle solution (4 ml) for 4h at 37 °C with gentle mixing as previously 

described [504]. The vesicle solution was doped with 0.1 mol % Texas Red labeled 

monoacryl lipid [510], which was utilized as a probe molecule to visualize the film and 

assess stability.  In brief, large unilamellar vesicles (LUV) were prepared by three 

successive freeze/thaw/vortex cycles of 10 mM monoAcryl-PC in 20 mM sodium 

phosphate buffer (pH 7.4) using liquid nitrogen and a 60°C water bath.  The LUVs were 

then extruded 21 times each through 2.0 µm and 600 nm polycarbonate filters and the 

lipid vesicle solution diluted to a final concentration of 1.2 mM with 20 mM sodium 

phosphate buffer (pH 7.4) and 150 mM NaCl.  At the end of the incubation period, 10 µl 

of a photoinitiator mixture (10 mM Eosin Y, 225 mM triethanolamine, and 37 mM vinyl 

pyrollidone in water) was added.  The solution was irradiated with visible light (50 

mW/cm2) for 30 min at room temperature, and, finally, capsules were rinsed with HBS. 

The structure of the membrane-mimetic film has been previously characterized using a 
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number of surface-sensitive techniques including XPS, FT-IR, ellipsometry, and neutron 

reflectivity [504, 511, 512].  

In an effort to improve the biocompatibility of the membrane-mimetic film, an 

alternative alginate/PLL PEM cushion was utilized as a support for membrane-mimetic 

film formation. Alginate microbeads were incubated with 0.05% w/v PLL (MW 15,000 – 

30,000) in normal saline for 6 minutes, rinsed once with 0.1% CHES buffer (pH 8.2) and 

subsequently with normal saline, and then incubated for 4 minutes in 0.2% alginate w/v 

in normal saline followed by two additional saline rinses. This process was repeated a 

second time, the alginate core was liquefied, and a terminal layer of PLL was adsorbed. 

A membrane-mimetic film, consisting of terpolymer and monoAcryl-PC, was assembled 

as described above. Membrane-mimetic films assembled alginate/PLL PEM films 

fabricated using this formulation will be referred to herein as modified membrane-

mimetic capsules.  
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Scheme A.1.   Construction of a polymerized, self-assembled, membrane-mimetic thin 
film on an alginate/poly(L-lysine) polyelectrolyte multilayer cushion. Alternating layers of 
poly(L-lysine) and alginate are first assembled on an alginate/Ca2+ hydrogel 
microsphere, followed by adsorption of an ampiphilic terpolymer with anionic anchoring 
groups. Following monolayer fusion of mono-acrylated phospholipids, photoinitiated 
polymerization was performed.   
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Animal model for biocompatibility testing.  All animal studies followed local 

institutional guidelines at Emory University.  Empty capsules were implanted into the 

peritoneal cavities of inbred male C57BL/6 mice weighing 25-30 g (Charles River 

Laboratories) for film stability and biocompatibility studies.  

Assessment of capsule biostability and biocompatibility.  Alginate 

microbeads coated with an (PLL/Alg)2, or “double-wall” film assembled using PLL (MW 

15,000 – 30,000) and the second of the two alginate/PLL PEM fabrication protocols 

described above, have been shown to resist fibrotic overgrowth within the peritoneal 

cavity of mice [513].  Therefore, these capsules were used as a comparative reference 

for film biocompatibility. Alginate beads coated with a double-wall or membrane-mimetic 

film were gently pipetted into a 3 ml syringe, and 1 ml of capsules was implanted into the 

peritoneal cavity of C57BL/6 mice. 

Extent of cellular capsule overgrowth.  Capsules were retrieved after one or 

four weeks and their biocompatibility was assessed using a semi-quantitative scoring 

system based on the extent and severity of cellular overgrowth.  A minimum of 200 

capsules were imaged under 10x magnification and individual capsules were assigned a 

score from 0 to 5 based on the approximate percentage of the capsule surface that was 

covered by adherent cells.  Figure A.1 summarizes this scoring system; a score of 0 is 

assigned if no cellular attachment to the capsule surface is observed, a score of 1 

indicates that ~1-25% of the capsule surface is covered with adherent cells, a score of 2, 

26-50%, 3, 51-75%, 4, 76-99%, and 5 if the capsule is completely overgrown with host 

cells.  Data is presented as the percentage of the total number of capsules observed that 

receive a given cellular overgrowth score. Additionally, the percent of freely floating 

capsules retrieved from the peritoneal cavity was determined by measuring the volume 

of capsules retrieved using a 3 ml syringe. 
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Figure A.1. Summary of fibrotic overgrowth scoring used to assess biocompatibility of 
microcapsules retrieved from the peritoneal cavity of mice.  A minimum of 200 retrieved 
capsules were examined at 10x magnification and assigned a score from 0 (no cellular 
overgrowth) to 5 (completely overgrown) based on the approximate percentage of 
capsule area covered by adherent host cells and fibrosis. 

 

Histological examination of adherent cells.  Retrieved capsules were also 

processed for histological and immunohistochemical evaluation to facilitate identification 

of adherent cell types.  A fraction of retrieved capsules were fixed in 10% neutral 

buffered formalin overnight and processed for paraffin embedding.  Sections were 

prepared at 5 µm and stained with hematoxylin and eosin (H&E).  Additionally, freshly 

retrieved capsules were mechanically fragmented to dislodge cells from the capsule 

surface and the lysate was filtered through a 100 µm cell strainer (Falcon) to retrieve 

dislodged cells.  Cytospins of dislodged cells were prepared on glass slides using a 

cytocentrifuge (Cytospin 4, Thermo Shandon) at 600 rpm for 2 minutes.  Slides were 

immediately fixed using cell fix (Thermo Shandon) and stained by Wright-Giemsa, 

according to standard protocols [514].  Different cell types were assessed by identifying 

cells with the morphological characteristics of monocytes/macrophages, lymphocytes, 

granulocytes, fibroblasts, and eosinophils.  Cytospins were further analyzed through 

immunofluorescent staining.  Cells were permeabilized with 0.5% Triton X-100 for 5 

minutes, rinsed with DH2O, and blocked with a serum free protein blocking solution 

(DakoCytomation) for 10 minutes.  Cells were then incubated with appropriate primary 

antibody at 1:100 dilution for 60 minutes in a humid chamber.  The primary antibodies 

used were as follows: anti-Mac-1 αM chain against macrophages, monocytes, and 
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granulocytes, MB19-1 against CD19+ B lymphocytes, and 17A2 against CD3+ T cells 

(Pharmingen).  Slides were then rinsed 3x with 1% BSA in PBS for 3 minutes each and 

incubated with FITC-conjugated secondary antibody (Pharmingen) at 1:200 dilution for 

20 minutes.  Slides were then rinsed with 1% BSA in PBS and imaged via fluorescent 

microscopy. 

 

A.3.  RESULTS 
 
 

Membrane-mimetic and (PLL/Alg)2 double-wall capsules implanted into the 

peritoneal cavity of C57BL/6 were retrieved after 1 week. Membrane-mimetic capsules 

elicited a severe foreign body response, with the majority of capsules found within large, 

cellularized aggregates of capsules that were often attached to intraperitoneal tissues.  

Capsules that remained freely floating in the peritoneal cavity were retrieved and a 

representative number (> 200 capsules) were subjected to cellular overgrowth scoring 

(Figure A.1).  A majority of the capsules, 66 ± 5.9% (n=4), were completely overgrown 

with adherent cells, while less than 1% of capsules appeared free of cell adhesion 

(Figure 2A, 3).  In contrast, 92.2 ± 3.2% (n=10) of double-wall capsules were found to be 

free of cell adhesion (Figure A.2B, A.3) and less than 1% of double-wall capsules were 

completely covered with adherent cells.  
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Figure A.2. Membrane-mimetic capsules (A), (PLL/Alg)2 double-wall capsules (B), and 
modified membrane-mimetic capsules (C) retrieved from the peritoneal cavity of 
C57BL/6 mice 1 week post-implantation. As evidenced by a clear reduction in the extent 
of capsular fibrosis, modification of the underlying alginate/poly-L-lysine multilayer 
cushion significantly improved biocompatibility of microcapsules coated with a 
membrane-mimetic film.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3. Semi-quantitative cellular overgrowth scoring of empty membrane-mimetic 
and (PLL/alginate)2 double-wall microcapsules retrieved from C57BL/6 mice at one 
week. *Modified membrane-mimetic and double wall capsules vs. original membrane-
mimetic capsules (ANOVA PLSD Fisher p < 0.05).  Modified membrane-mimetic 
microcapsules and (PLL/alginate)2 double-wall capsules have significantly less fibrotic 
overgrowth than original membrane-mimetic capsules and are not statistically different 
from each other. 
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Hematoxylin and Eosin, as well as Wright-Giemsa staining, clearly 

demonstrated the involvement of macrophages, granulocytes, and eosinophils in the 

host response to membrane-mimetic capsules (Figure A.4A, B).  These findings are 

corroborated by immunofluorescent staining of cytospins (Figure A.4C), which 

demonstrate the involvement of Mac-1 positive cells in the foreign body response to 

implanted membrane-mimetic capsules. CD19 and CD3 staining were negative, 

indicating the absence of adherent T and B lymphocytes. These findings are consistent 

with a typical foreign body reaction characterized by the overgrowth of materials with 

inflammatory cells.  Indeed, similar responses have been observed against empty 

microcapsules in the immediate postimplant period [180]. 

 

 

 

 

 

 
 
Figure A.4. Histological analysis of membrane-mimetic capsules retrieved 1 week post-
implant. (A) H&E staining of formalin fixed, paraffin embedded capsules (10x) 
demonstrates the presence of adherent cells along the periphery of the capsule.  (B) 
Wright-Giemsa staining (40x) of cells dislodged from membrane-mimetic capsules 
revealed the presence of macrophages, eosinophils, and granulocytes. (C) 
Immunofluorescent staining of cytospins prepared from dislodged adherent cells 
indicated the involvement of Mac-I positive cells in the host response to membrane-
mimetic capsules (40x); staining for CD19+ B lymphocytes and CD3+ T lymphocytes 
was negative (data not shown).  
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As illustrated in Figure A.5, once labeled with Texas red, the surface of 

membrane-mimetic capsules were easily detected by confocal microscopy.  Confocal 

microscopic evaluation of membrane-mimetic capsules retrieved after 1 week revealed a 

significant number of film defects and, in many cases, the film was completely absent 

(data not shown). This is in contrast to a control group stored at 37°C without light 

exposure, in which no gross film defects were observed. 

 

 

 

 

 

 

 
 
Figure A.5.  By doping mono-acrylate PC films with 0.1 mol % Texas Red acrylate PE, 
membrane-mimetic films can be readily observed on the surface of microcapsules. (A) 
Confocal fluorescent and corresponding DIC micrograph (10x) of microcapsules coated 
with a membrane-mimetic thin film doped with 0.1 mol % Texas Red acrylate PE. (B) 3D 
reconstruction of 5 µm optical sections taken throughout half of a Texas Red-labeled 
membrane-mimetic capsule.  
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 The inability of these empty membrane-mimetic capsules to limit cell adhesion 

prompted us to assemble the membrane-mimetic film on an alternative PLL/alginate 

PEM support. Membrane-mimetic films assembled on microcapsules fabricated using 

this PEM are film is referred to herein as modified membrane-mimetic capsules. Table 

A.1 summarizes the different conditions used to generate Alg/PLL PEMs as supports for 

membrane-mimetic film assembly.  Double wall PLL/alginate microcapsules elicit little 

adverse cellular reaction and are comprised of a 27 kD PLL, while the PLL used in the 

initial PEM support had a molecular weight of >300 kD. Prior studies have suggested 

that a more compact PLL-alginate multilayer is produced using low molecular weight 

PLL due to a high degree of polymer interpenetration [180].  Thus, we speculated that 

the use of the high molecular weight polymer may have lead to exposed PLL chains that 

were not effectively covered by the membrane-mimetic film.  With this in mind, 

membrane-mimetic films were re-fabricated on a modified PLL/Alg PEM film.  

Modified membrane-mimetic capsules, along with standard double-wall 

capsules, were implanted into the peritoneal cavity of C57BL/6 mice and retrieved at 1 

and 4 weeks.  After one week, 70 ± 2.8% (n=4) of modified membrane-mimetic capsules 

were retrieved from the peritoneal cavity, 85.3± 2.8% (n=7) of which were free of cell 

adhesion (Figure A.2C, Figure A.3).  These results were not statistically different 

(p>0.05) than those observed with double-wall capsules in which 73.8±5.5% of capsules 

were retrieved (n=4), wherein 92.2±3.2% capsules were free of cell adhesion (n=10) 

demonstrating equivalent biocompatibility between the two capsule types after one 

week.  Similar results were obtained at one month, where 68±8.9% of modified 

membrane-mimetic capsules were retrieved, 81.3±7.8% (n=12) of which were free of cell 

adhesion.  Double wall capsules had a 77±7.8% retrieval rate and 73.9±8.7% (n=8) of 

the capsules were free of cell adhesion, demonstrating equivalent resistance to fibrotic 

overgrowth between the two capsule types at 4 weeks (Figure A.6).   
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 Confocal microscopy of modified membrane-mimetic capsules doped with a 

Texas Red labeled mono-AcrylPE demonstrated that at 4 weeks the vast majority of 

capsules were free of film defects and film fluorescent intensity was qualitatively similar 

to controls incubated at 37ºC, indicating a high degree of film stability in vivo (Figure 

A.7).  

 

 
 
Table A.1. Comparision of PEM support fabrication protocols 

Polyelectrolyte Condition Membrane-mimetic Modified Membrane-mimetic 

Temperature On ice  Room temperature 

PLL MW >300 kDa 27 kDa 

PLL incubation time 2 minutes 6 minutes 

PLL concentration 0.1 % 0.05% 

PLL solvent HBS, pH 7.4 Normal saline 

Rinse after PLL layer 2x w/HBS, pH 7.4 1 x w/0.1% CHES, pH 8.2 
1 x w/normal saline 

Alginate incubation time 2 minutes 4 minutes 

Alginate concentration 0.15 % 0.2% 

Alginate solvent HBS, pH 7.4 Normal saline 
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Figure A.6. Semi-quantitative fibrotic overgrowth scoring of empty modified membrane-
mimetic and double-wall microcapsules retrieved from C57BL/6 mice at four weeks.  The 
fibrotic response to modified membrane-mimetic microcapsules and double-wall 
capsules were not statistically different from each other (p>0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A.7. Confocal fluorescence microscopy (10x) was used to obtain optical sections 
of a representative modified membrane-mimetic capsule stored at 37°C in PBS without 
light exposure (A) and harvested 4 weeks after implantation in a C57BL/6 mouse (B). To 
detect the film, capsules were coated with a Texas Red-labeled membrane-mimetic film. 
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A.4.  DISCUSSION 
 

PC-based polymers have been widely utilized as biocompatible coatings for a 

number of implantable materials [494-500].  However, while such PC-based polymer 

coatings may offer high biocompatibility, they lack the unparalleled molecular control 

over surface order and chemistry offered by self-assembled supported lipid films, in 

particular the ability to generate bioactive materials through incorporation of membrane-

based proteins and carbohydrates that may modulate the local biochemical milieu.  

In order to coat materials with a robust, multicomponent membrane-mimetic film, 

our research efforts have been directed towards the development of a scheme for 

polymerization of surface-coupled planar lipid assemblies.  We successfully synthesized 

monoacrylate functionalized lipid monomers and demonstrated that, as unilamellar 

vesicles, these lipid monomers can fuse onto a variety of alkylated substrates and form a 

two-dimensional thin film.  Stabilization of the lipid assembly is then achieved using a 

rapid visible light-mediated photopolymerization scheme, which is effective at room 

temperature.  Success in coating 2-D surfaces established a foundation for coating 

alginate microbeads [504] and ePTFE vascular grafts [509].  Detailed investigations of 

surface properties including contact angle goniometry, ESCA, ellipsometry, FT-IR 

spectroscopy, as well as neutron reflectivity and high resolution SEM have been 

reported for both 2-D and 3-D systems [504, 509, 511, 512].  Additionally, we have 

previously demonstrated the ability of membrane-mimetic films to serve as a versatile 

template for the assembly of membrane-bound macromolecules that may lead to 

improved hemocompatibility and biocompatibility [505-508, 515].  In this report, we 

evaluate, and subsequently improve, the in vivo stability and biocompatibility of 

polymerized, self-assembled membrane-mimetic thin films assembled on an 

alginate/PLL polyelectrolyte multilayer.  
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Stability and biocompatibility of the membrane-mimetic coating was 

demonstrated visually over a 4-week period after implantation of empty modified 

membrane-mimetic microcapsules in the peritoneal cavity of C57BL/6 mice.  Prior 

studies have suggested that PC-based polymers should be associated with limited cell 

and protein reactivity, and studies from our group and others have demonstrated that 

membrane-mimetic surfaces exhibit little protein adsorption or cell adhesion [480-486, 

492, 493].  However, the biocompatibility of membrane-mimetic films assembled on 

alginate microcapsules was dependent on the underlying polyelectrolyte multilayer on 

which the film was assembled, as modified membrane-mimetic capsules were 

significantly more biocompatible than those originally fabricated.  Table A.1 summarizes 

the differences in the PLL-alginate polyelectrolyte multilayer between capsule types.  

The most notable differences in the multilayer are PLL molecular weight, concentration, 

and incubation time.  Previous studies have demonstrated that these variables have 

important effects on microcapsule biocompatibility and mechanical properties. The 

molecular weight of PLL is considered a key parameter in determining microcapsule 

compressive strength.  The relationship between capsule mechanical properties and 

polycation molecular weight is governed by the crosslink density and membrane 

thickness of the multilayer thin film. Very low molecular weight chains (<4 kD) do not 

provide a sufficient number of electrostatic interactions to stabilize capsules, while very 

high molecular weight polycations (>300 kD) form thin, frail membranes due to limited 

penetration into the alginate-calcium hydrogel.  As a result, capsule compressive 

strength has been reported to be a maximum when a ~30 kD PLL is used [516].  

Additionally, increased incubation time has been shown to result in increased membrane 

strength [517].  Therefore, it is possible that original membrane-mimetic capsules (PLL 

MW >300 kDa) were more susceptible to mechanical damage in the peritoneal cavity 

resulting in the exposure of reactive membrane components, such as PLL or terpolymer. 
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Indeed, transplantation of empty capsules in which the outer surface was either PLL or 

terpolymer generated a very rapid and robust cell adhesive response within one week of 

implantation (data not shown).   

Previous studies have also implicated PLL in decreased microcapsule 

biocompatibility.  Though microcapsule biocompatibility is greatly improved when an 

outer layer of alginate is used to cover reactive PLL, evidence suggests that this 

shielding is incomplete [518].  Additionally, PLL has been shown to be released from 

microcapsules over time [517], resulting in inflammatory cell necrosis and 

proinflammatory cytokine production [188].  Whether exposed PLL in the polyanion-

polycation complex or free PLL leaking from capsules is responsible for capsule fibrosis 

is not clear. However, it is likely that PLL molecular weight plays an important role in 

both of these mechanisms due to the dependence of molecular weight on the ability of 

PLL to interpenetrate and complex with alginate layers.  

Differences in biocompatibility might also be attributed to changes in membrane-

mimetic film structure as the physiochemical properties of supported lipid films are 

dependent on the nature of the underlying substrate, in this instance an alkylated 

polyelectrolyte multilayer film.  While elucidating such changes in lipid film structure is 

beyond the scope of this work, it is conceivable that differences in polyelectrolyte film 

structure, and therefore surface roughness, could influence the ability of lipid vesicles to 

fuse on the capsule surface [477, 519], possibly resulting in small defects in the outer 

surface and the exposure of underlying cell reactive components, such as PLL or 

terpolymer. Though the membrane-mimetic film has been previously characterized by a 

variety of surface-sensitive techniques including XPS, FT-IR, ellipsometry, and neutron 

reflectivity [504, 511, 512], the limited spatial resolution of these techniques within the 

plane of the film, combined with their capacity to probe restricted film regions, precludes 

the detection of small surface defects or inhomogeneities in the membrane-mimetic film. 
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A.5.  CONCLUSIONS 
 

The composition of the polyelectrolyte multilayer, which acts as a hydrophilic 

cushion for an overlying self-assembled membrane-mimetic thin film, significantly 

influences in vivo biocompatibility and film stability.  Specifically, polymeric lipid films 

produced on a polyelectrolyte multilayer consisting of alginate and low molecular weight 

PLL resist cellular and fibrotic overgrowth and demonstrate a high degree of biostability 

after 4 weeks in C57BL/6 mice.  Given the capacity of membrane-mimetic films to 

incorporate membrane-based proteins and carbohydrates, the present system offers a 

route through molecular self-assembly to robust and biocompatible coatings for 

implantable devices that may be both chemically and biologically heterogenous.  
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